PL EN
Comparison of Statistical versus Stochastic Models for Work Index Determination in Quartz-Marble Mixtures
 
Więcej
Ukryj
1
Universidad de Santiago de Chile
 
 
Autor do korespondencji
Sebastian Pérez   

Universidad de Santiago de Chile
 
 
Mining Science 2021;28:127-140
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The required work for ore trituration is represented by Bond Work Index value and it’s deter-mined by the grindability test for ball mills. This article examines the grinding behavior of ore blends with different mechanical properties in standard ball mills. The goal of this research was to compare a statistic and stochastic models of the Work Index value for mixtures of quartz and marble at different proportions of each material. Quartz and marble bearing rocks were selected for this study due to the high difference be-tween the Work Index value of each material, making the variability of the results more evident. Work In-dexes values obtained for each mixture are shown, from which a deterministic model was proposed defined by the regression of the data. The novelty of this research lies in the non-linear model, which was the best fit for the Work Index value of the quartz-marble blends. Our methodology allows to build more accurate models and can be used for quartz-marble blends and other materials.
 
REFERENCJE (24)
1.
ANNICCHIARICO W., 2018, Desarrollo de un modelo numérico basado en computación evolutiva para evaluar la eficiencia del proceso de trituración de minerales, Revista de la Facultad de Ingeniería UCV, Vol. 31, No. 2, 127–141.
 
2.
ARAS A., ÖZŞEN H., DURSUN A., 2019, Using artificial neural networks for the prediction of bond work index from rock mechanics properties, Mineral Processing and Extractive Metallurgy Review, Vol. 41, No. 3, 145–152.
 
3.
BOND F., 1961, Crushing and grinding calculations, British Chemical Engineering, Vol. 6, 378–385.
 
4.
CHAKRABARTI D., 2000, Simple approach to estimation of the work index, Mineral Processing and Extractive Metallurgy, Vol. 109, No. 2, 83–89.
 
5.
FARZANEGAN A., MIRZAEI Z., 2015, Scenario-Based Multi-Objective genetic algorithm optimization of closed Ball-Milling circuit of Esfordi Phosphate Plant, Mineral Processing and Extractive Metallurgy Review, Vol. 36, No. 2, 71–82.
 
6.
GHAREHGHESHLAGH H., 2016, Kinetic grinding test approach to estimate the ball mill work index, Physicochemical Problems of Mineral Processing, Vol. 52, No. 1, 342–352.
 
7.
HADIZADEH M., FARZANEGAN A., NOAPARAST M., 2017, Supervisory fuzzy expert controller for SAG mill grinding circuits: Sungun copper concentrator, Mineral Processing and Extractive Metallurgy Review, Vol. 38, No. 3, 168–179.
 
8.
HEISKARI H., KURKI P., LUUKKANEN S., GONZALEZ M., LEHTO H., LIIPO J., 2019, Develop-ment of a comminution test method for small ore samples, Minerals Engineering, Vol. 130, 5–11.
 
9.
HOSTEN C., AVSAR C., 1998, Grindability of mixtures of cement clinker and trass, Cement and Con-crete Research, Vol. 28, No. 11, 1519–1524.
 
10.
KROESE D., BRERETON T., TAIMRE T., BOTEV Z., 2014, Why the Monte Carlo method is.
 
11.
so important today, Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 6, No. 6, 386–392.
 
12.
LUCAY F., GÁLVEZ E., SALEZ-CRUZ M., CISTERNAS L., 2019, Improving milling operation using uncertainty and global sensitivity analyses, Minerals Engineering, Vol. 131, 249–261.
 
13.
LUND C., LAMBERG P., LINDBERG T., 2015, Development of a geometallurgical framework to quan-tify mineral textures for process prediction, Minerals Engineering, Vol. 82, 61–77.
 
14.
MAGDALINOVIC N., TRUMIC M., TRUMIC G., MAGDALINOVIC S., TRUMIC M., 2012, Determination of the Bond work index on samples of non-standard size, International Journal of Mineral Processing, Vol. 114–117, 48–50.
 
15.
MUCSI G., 2008, Fast test method for the determination of the grindability of fine materials, Chemical Engineering Research and Design, Vol. 86, No. 4, 395–400.
 
16.
MUCSI G., 2013, Grindability of quartz in stirred media mill, Particulate Science and Technology, Vol. 31, No. 4, 399–406.
 
17.
ÖNER M., 2000, A study of intergrinding and separate grinding of blast furnace slag cement, Cement and Concrete Research, Vol. 30, No. 3, 473–480.
 
18.
PEDROSA F., BERGERMAN M., SEGURA-SALAZAR J., DELBONI Jr. H., 2019, HPGR como alternativa a la ruta de conminución de alúmina fundida: una evaluación del potencial de simplificación del circuito, REM – International Engineering Journal, Vol. 72, No. 3, 543–551.
 
19.
SHAD H., SERESHKI F., ATAEI M., KARAMOOZIAN M., 2018, Effect of magnetite content on Bond work index and preconditioning: Case study on Chadormalu iron ore mine, Journal of Central South University, Vol. 25, No. 4, 795–804.
 
20.
SINGH V., DIXIT P., VENUGOPAL R., VENKATESH K., 2019, Ore pretreatment methods for grind-ing: Journey and prospects, Mineral Processing and Extractive Metallurgy Review, Vol. 40, No. 1,.
 
21.
1–15.
 
22.
TAVARES L., KALLEMBACK R., 2013, Grindability of binary ore blends in ball mills, Minerals Engi-neering, Vol. 41, 115–120.
 
23.
YAN D., EATON R., 1994, Breakage properties of ore blends, Minerals Engineering, Vol. 7, No. 2–3,.
 
24.
185–199.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top