PL EN
Computational Model of the Basic Efficiency Parameters of the Bucket Wheel Excavator Working in a Block With a Vertical Obstacle
 
Więcej
Ukryj
1
Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Department of Mining and Geodesy, Na Grobli 15, 50-421 Wroclaw, Poland
 
 
Autor do korespondencji
Anna Nowak-Szpak   

Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wroclaw, Poland
 
 
Mining Science 2021;28:189-200
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
W artykule przedstawiono wyniki eksperymentów numerycznych mających na celu określenie wpływu wystąpienia pionowej przeszkody w postaci studni/piezometru na osiągane podstawowe parametry pracy koparki. Badania symulacyjne na zbudowanym modelu obejmowały określenie podstawowych parametrów koparki pracującej w zabierce na froncie ustabilizowanym (dla porównania) oraz na froncie nieustabilizowanym dla dwóch wariantów odsłonięcia infrastruktury odwadniającej.
 
REFERENCJE (22)
1.
BEBIC M., RISTIĆ L., 2018, Speed Controlled Belt Conveyors: Drives and Mechanical Considera-tions, Advances in Electrical and Computer Engineering, 18 (1), January, 51–60, DOI: 10.4316/ AECE.2018.01007.
 
2.
BRÎNAŞ I., ANDRAŞ A., RADU S.M., POPESCU F.D., ANDRAŞ I., MARC B.I., CIOCLU A.R., 2021, Determination of the Bucket Wheel Drive Power by Computer Modeling Based on Specific Energy Consumption and Cutting Geometry, Energies, 14, 3892; https://doi.org/10.3390/en1413....
 
3.
DANIČIĆ D., LAZAREVIĆ Ž., MITROVIĆ S., 2016, Proactive Approach as Contribution to System of Preventing Fatigue Failures of Bucket Wheel Excavator, Conference: 13th International Sym-posium Continuous Surface Mining ISCSM 2016At, Belgrade, Serbia.
 
4.
GALETAKIS M., ROUMPOS C.A., 2015, Multi-Objective Response Surface Analysis for the Deter-mination of the Optimal Cut-Off Quality and Minimum Thickness for Selective Mining of Multiple-Layered Lignite Deposits, Energy Sources, Part A: Recovery, Utilization, and Environmental Ef-fects, Vol. 37, No. 4, pp. 428–439.
 
5.
GŁADYSIEWICZ L., KRÓL R., KISIELEWSKI W., KASZUBA D., 2017, Experimental determina-tion of belt conveyors artificial friction coefficient, Acta Montanistica Slovaca, 22 (2), 206–214.
 
6.
ILIĆ S., 2020, Calculation the capacity of bucket wheel excavator the selective mining of overburden, Underground Mining Engineering, 36, 19–28, DOI: 10.5937/podrad2036019I.
 
7.
KRESSNER M., ş.a., 2006, Cutting Resistance an Cutting Tool Design on Bucket Wheel Excavators. Proceedings of ISCSM 2006, 8TH International Symposium, Continuous Surface Mining, Aachen, September 24th–27th.
 
8.
KAWALEC W., KRÓL R., 2021, Generating of Electric Energy by a Declined Overburden Convey-ors in a Continous Surface Mine, Energies, 14, 4030.
 
9.
KAWALEC W., SUCHORAB N., KONIECZNA-FUŁAWKA M., KRÓL R., 2020, Specific energy consumption of a belt conveyor system in a continuous surface mine, Energies, 13 (19), DOI: 10.3390/en13195214.
 
10.
KOŁKIEWICZ W., SZATAN M., 1993, Strumień urobku jako nośnik informacji o jakości procesu roboczego odkrywkowego układu technologicznego typu KTZ, Górnictwo Odkrywkowe, pp. 3–15.
 
11.
NAN M.S., ANDRAŞ I., JULA D., 2008, Study of the Working Regime of the Bucket Wheel Excava-tors in the Conditions of Romanian Open Pit Lignite Mines. [In:] 8th Wseas International Confer-ence On Simulation, Modelling and Optimization (SMO ’08), Santander, 2008.
 
12.
NOWAK-SZPAK A., 2017, Systemy zdalnego kierowania ruchem maszyn górniczych w kopalniach odkrywkowych – propozycja identyfikacyjno-symulacyjnego programu projektowania pracy ko-parki kołowej, Górnictwo Odkrywkowe, 2017, LVIII.6, pp. 4–13.
 
13.
POLTEGOR-INSTYTUT, 2013, https://www.igo.wroc.pl/techno....
 
14.
RAAZ V., 2002, Assessment of the Digging Force and Optimum Selection of the Mechanical and Operational Parameters of Bucket Wheel Excavators for Mining of Overburden, Coal and Part-ings, Krupp Fördertechnik GmbH, Essen, Germany.
 
15.
RAŠIĆ N., BEBIĆ M., RISTIĆ L., MIHAILOVIĆ I., JEVTIĆ D., ŠTATKIĆ S., 2016, Improved effi-ciency of bucket wheel excavator operation with advances in the control algorithm. [In:] Proc. 4th International Symposium on Environmental Friendly Energies and Applications (EFEA), Septem-ber, pp. 1–6, DOI: 10.1109/EFEA.2016.7748809.
 
16.
STOBIECKI Z., PIERZCHAŁA K., 2018, Metody oceny stanu technicznego obiektów odwodnienia wgłębnego w KWB Bełchatów, Górnictwo Odkrywkowe, LIX, 2, pp. 28–33.
 
17.
SZCZEPIŃSKI J., 2018, ,Uwarunkowania hydrogeologiczne wydobycia kopalin w kopalniach od-krywkowych węgla brunatnego, Górnictwo Odkrywkowe, LIX, 2, pp. 22–26.
 
18.
URAL S., 2001, The Effects of Operational Parameters on the Output Efficiency of the Bucket Wheel Excavator. [In:] Proc. 17th Int. Mining Congress and Exhibition of Turkey-Imcet, Ankara, Tur-key, pp. 663–669.
 
19.
WYGODA M., NOWAK-SZPAK A., SZEPIETOWSKI S.W., BEDNARCZYK Z., CIOCH W., 2014, Mechatroniczne zabezpieczenia i sterowanie maszyn w rezultatach realizacji projektu rozwojowe-go. Mechatroniczny system sterowania, diagnostyki i zabezpieczeń w maszynach górnictwa od-krywkowego. Górnictwo Odkrywkowe, R. LV, 1, pp. 67–77.
 
20.
ZHAO-XUE C., YAN-LONG C., 2014, Determination and analysis of the theoretical production of a bucket wheel excavator, Arch. Min. Sci., 59 (1), 283–291.
 
21.
PACTWA, K., WOŹNIAK, J., 2015, The meaning of geostatistical research in the light of the concept of assessing values of lignite deposits. Mining Science 22 no. 2 105-112. doi:10.5277/ms150208.
 
22.
SUCHORAB, N. 2019. Specific energy consumption – the comparison of belt conveyors. Mining Science 26. 263-274. DOI:10.37190/msc192619.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top