Wroclaw University of Technology, Department of Geoengineering, Mining and Geology
Corresponding author
Danuta Szyszka
Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland,
Department of Geoengineering, Mining and Geology, ul. Na Grobli 15, 50-421 Wroclaw, Poland
The objective of this paper was to determine the Critical Coalescence Concentration (CCC) of surfactants such as N(dodecyloxycarboxymethyl) N,N,N-(trimethylammonium) bromide (DMGM- 12), N-[2-(dodecyoxycarboxy)ethyl] N,N,N-(trimethylammonium) bromide (DMALM-12) and N-[3- (dodecanoyloxycarboxy)prophyl] N,N,N-(trimethylammonium) bromide (DMPM-11). The surfactants used represent quaternary ammonium compounds containing a hydrophobic moiety with an ester group (commonly known as “esterquats”). The CCC value was determined by analysis of the relationship between concentration of surfactant and average air bubble diameter. The values of the critical coalescence concentration (CCC) were estimated using a graphical method.
REFERENCES(15)
1.
CHO, Y.S., LASKOWSKI, J. S., 2002a, Effect of Flotation Frothers on Bubble Size and Foam Stability, Int. J. Min. Proc. Vol. 64, 69–80.
LASKOWSKI J.S., CHO Y.S., DING K.., 2003a. Effect of frothers on bubble size and foam stability in potash ore flotation systems. Canadian Journal of Chemical Engineering, 8, 63–69.
LASKOWSKI J.S., TLHONE T.,WILIAMS P., DING K., 2003b. Fundamental propertis of the polyoxypropylene alkyl eter flotation frothers. Int. J. Miner. Proces. 72, 289–299.
PACEK A.W.,MAN C.C., NIENOW A.W., 1998. On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chemical Engineering Science, 53,11, 2005–20.
SZYSZKA, D.; DRZYMAŁA, J.; ŁUCZYŃSKI, J.; WILK, K. A.; PATKOWSKI, J., 2006. Concentration of alfa-terpineol and (2-dodecanoyloxyethyl)trimethyl ammonium bromide requiredfor prevention of air bubble coalescence in aqueous solutions. Physicochemical Problems of Mineral Processing, 40, 53–59.
SZYSZKA, D., DRZYMAŁA J., RESIAK P., MIELCZARSKI E., MIELCZARSKI J., 2008a. Entrainment of quartz in flotation tests with frothers, Proceedings of XXIV International Mineral Processing Congress, Beijing, China, 2008, 1068–1073.
SZYSZKA, D.; GLAPIAK, E.; DRZYMAŁA, J., 2008b. Entrainment-flotation activity of quartz in the presence of selected frothers. Physicochemical Problems of Mineral Processing, 42, 85–90.
TUCKER J.P., DEGLON D.A., FRANZIDIS J.P., HARRIS M.C., O’COONOR C.T., 1994. An evaluation of direct method of buble size distribution measurments in a laboratory batch flotation cel, Minerals Eng., 7, 667.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.