PL EN
Critical coalescence concentration (CCC) of various surfactants used as flotation reagents in mineral
 
 
Więcej
Ukryj
1
Wroclaw University of Science and Technology (WUST), Poland
 
 
Autor do korespondencji
Danuta Szyszka   

Wroclaw University of Science and Technology (WUST), Poland
 
 
Mining Science 2022;29:221-232
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The role of flotation frothing agents in the flotation process is generally known, especially due to the size of bubbles and the stability of the foam formed. In recent years, a number of new reagents have been introduced. The purpose of this article is to present a comprehensive database containing the characteristics of surfactant families discussed using the parameter of the so called the Critical Coa-lescence Concentration (CCC). This article presents an analysis of the experimental data set by the author and the experimental data published in the literature.
REFERENCJE (29)
1.
REFERENCES.
 
2.
ATRAFI A., GOMEZ C.O., FINCH J. A. and PAWLIK M., 2012, Frothing behavior of aqueous solu-tions of oleic acid, Minerals Engineering, 36–38, 138–144.
 
3.
CHO Y.S. and LASKOWSKI J.S., 2002a, Effect of flotation Frothers on bubble size and foam stabil-ity, Int. J. Miner. Process, 64, 69–80.
 
4.
CHO Y.S. and LASKOWSKI J.S., 2002b, Bubble coalescence and its effect on bubble size and foam stability, Canadian J. Chem. Eng., 80, pp. 299–305.
 
5.
DRZYMALA J., 2007, Mineral Processing. Foundations of theory and practice of minerallurgy, 1st ed. Oficyna Wydawnicza Politechniki Wrocławskiej, Wroclaw, Poland, 2007.
 
6.
DRZYMALA J. and KOWALCZUK P.B., 2018, Classification of Flotation Frothers, Minerals, 8 (2), 53.
 
7.
DRZYMAŁA J., 2017, Universal equations for Pythagorean and Sauter-type formulas of mean value calculation and classification of the extended Pythagorean means, Mining Science, 24, 27–235.
 
8.
DUCHNOWSKA M., ŁUSZCZKIEWICZ A., DRZYMAŁA J., KONOPACKA Ż., KOWALCZUK P., BAKALARZ A., FOSZCZ D., SZYSZKA D., KARWOWSKI P., 2014, Development of organic carbon separation technology at the stage of initial flotation (Opracowanie technologii wydziele-nia węgla organicznego na etapie flotacji wstępnej), Raport Nr I-11/2014/S-21, Instytut Gornic-twa Politechniki Wroclawskiej, Wroclaw, November (in Polish).
 
9.
FINCH J.A, NESSET J., and ACUNA C., 2008, Role of frother on bubble production and behavior in flotation, Miner. Eng., 21, 949–957.
 
10.
FINCH J. and ZHANG W., 2014, Frother function-structure relationship: Dependence of CCC95 on HLB and H-ratio, Miner. Eng., 61, 1–8.
 
11.
GRAU R.A. and LASKOWSKI J.S., 2006, Role of Frothers in bubble generation and coalescence in.
 
12.
a mechanical flotation cell, Can J. Chem. Eng., 84, 170–182.
 
13.
GUPTA A.K., BANERJEE P.K., MISHRA A., SATISH P. and PRADIP, 2007, Effect of alcohol and ether Polyglycol Frothers on foam stability, bubble size and coal flotation, Int. J. Miner. Process., 82, 126–137.
 
14.
KOWALCZUK P.B., 2013, Determination of Critical Coalescence Concentration and Bubble Size for Surfactants Used as Flotation Frothers, Ind. Eng. Chem. Res., 52 (33), 11752–11757.
 
15.
KRACHT W. and FINCH J.A., 2009, Using sound to study bubble coalescence, Journal of Colloid and Interface Science, 332, 237–245.
 
16.
LASKOWSKI J.S., 2003, Fundamental properties of flotation frothers, [in:] L. Lorenzen, D.J. Brad-shaw (Eds.), 22nd Int. Mineral Processing Congress, Cape Town, 2, 788–797.
 
17.
LASKOWSKI J.S., 2004, Frothers flotation testing, Physicochemical Problems of Mineral Processing, 38, 13–22.
 
18.
LASKOWSKI J.S., TLHONE T., WILLIAMS P., and DING K., 2003, Fundamental properties of the polyoxypropylene alkyl ether flotation frothers, Int. J. Miner. Process., 72, pp. 289–299.
 
19.
MELO F., LASKOWSKI J.S., 2006, Fundamental Properties of Flotation Frothers and their effect on flotation, Minerals Engineering, 19, 766–773.
 
20.
PACEK A.W., MAN C.C., and NIENOW A.W., 1998, On the Sauter mean diameter and size distribu-tions in turbulent liquid/liquid dispersions in a stirred vessel, Chemical Engineering Science, 53 (11), 2005–2011.
 
21.
SZYSZKA D., 2018, Critical Coalescence Concentration (CCC) for surfactants in aquerous solu-tions, Minerals, 8 (10), 431.
 
22.
SZYSZKA D., 2013, Critical Coalescence Concetration (CCC) as a parameter for evaluation of selected quaternary ammonium compounds, Mining Science, 20, 101–113.
 
23.
SZYSZKA D., 2016, Critical concentration coalescence of potential frothers for copper-shale flota-tion (Krytyczne stężenie koalescencji potencjalnych spieniaczy do flotacji łupka miedzionośnego), [in:] Lupek Miedzionosny II, P.B. Kowalczuk, J. Drzymala (Eds.), WGGG PWr, Wroclaw, Poland, pp. 222–227 (in Polish).
 
24.
SZYSZKA D., DRZYMAŁA J., ŁUCZYŃSKI J., WILK K.A., and PATKOWSKI J., 2006, Concentra-tion of α-Terpineol and (2-Dodecanoyloxyethyl)trimethyl Ammonium Bromide Required for Pre-vention of Air Buble Coalescence in Aqueous Solutions, Physicochem. Probl. Mineral Proc., 40, pp. 53–59.
 
25.
SZYSZKA D., DRZYMAŁA J., RESIAK P., MIELCZARSKI E., and Mielczarski J., 2008b, Entrain-ment of quartz in flotation tests with Frothers, Proceedings of the XXIV International Mineral Pro-cessing Congress, Beijing, China, 1068–1073.
 
26.
SZYSZKA D., GLAPIAK E., DRZYMAŁA J., 2008a, Entrainment-flotation activity of quartz in the presence of selected Frothers, Physicochem. Probl. Mineral Proc., 42, 85–90.
 
27.
TAN X.L., ZHANG L., AN J.Y., ZHAO S., and YU J.Y., 2004, J. Surfactants Deterg., 7, 135.
 
28.
TUCKER J.P., DEGLON D.A., FRANZIDIS J.P, HARRIS M.C., and O’COONOR C.T., 1994, An evaluation of the direct method of bubble size distribution measurments in laboratory batch flota-tion goal, Minerals Eng., 7, 667.
 
29.
ZHANG W., NESSET J.E, RAO R., and FINCH J.A., 2012, Characterizing Frothers through Coales-cence Critical Concentration (CCC) 95-hydrophila-Lipophile Balance (HLB) Relationship, Miner-als, 2 (3), pp. 208–227.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top