PL EN
EVALUATION OF SEISMIC HAZARD USING TECTONIC FAULT DATA: CASE OF BENI-CHOUGRANE MOUNTAINS (WESTERN ALGERIA)
 
Więcej
Ukryj
1
Mascara University, Laboratory of Biological Research and Geomatics (LRSBG), Pbox 305, Mamounia Road, Mascara, Algeria.
 
2
Faculty of Sciences of the Earth and the Universe. University of Oran2 Mohamed BENAHMED, Bir Djir, Oran 31000, Algeria
 
 
Autor do korespondencji
Refas Soria   

Mascara University, Laboratory of Biological Research and Geomatics (LRSBG), Pbox 305, Mamounia Road, Mascara, Algeria.
 
 
Mining Science 2019;26:123-145
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Abstract: In the world, people are increasingly exposed to natural hazards such as earthquakes. To this end, seismic risk mapping remains an essential topic of study in order to minimize their destructive effects. These maps are needed for both seismic risk management and for the design of infrastructure. The challenge is to take into account local information provided by seismic sources (historical seismicity) as well as information related to active tectonic faults. In this article, we calculated the seismic risk in the Mascara Mountains (western Algeria) using the geo-metric characteristic of known faults. This study is based on an important collection of a tectonic database of these faults (Nature, geometry and geological context). This information is relevant for their seismic potential. Indeed, by including these formations we tried to compute the seismic risk this region characte-rized by weak seismicity. Our results show more or less alarming facts. Indeed, the magnitude values calculated are between 4.85 and 7.25, whereas the magnitudes obtained by experimental seismicity do not exceed 6 on the Richter scale. The values of the maximum ground acceleration (PGA) are between 0.03 and 0.28g. These results were compared with assessments made on the basis of historical seismicity; the maximum values obtained do not exceed 0.2 g. The higher values of magnitude calculated from the active faults is due to: (i) the nature of the faults (inverse, normal and strike slip), (ii) the geometry (length and depth) and (ii) that some of these faults may have an aseismic character.
REFERENCJE (135)
1.
AMBRASEYS N.N., 1995, The prediction of earthquake peak ground acceleration in Europe, Earthquake.
 
2.
Engineering and Structural Dynamics, 24 (4), 467–490.
 
3.
AMBRASEYS N.N., Jackson J.A., 1998, Faulting associated with historical and recent earthquakes in.
 
4.
the Eastern Mediterranean region, Geophys. J. Int., 133 (2), 390–406.
 
5.
ANDERSON R.V., 1936, Geology in the coastal atlas of western Algeria, Memoir of the Geological.
 
6.
Society of America, New York, 4, 1–450.
 
7.
AYADI A., OUSADOU-AYADI F., BOUROUIS S., BENHALLOU H., 2002, Seismotectonics and.
 
8.
seismic quietness of the Oranie region (Western Algeria), The Mascara earthquake of August 18th,.
 
9.
1994, Mw = 5.7, Ms = 6.0, J. Seismol., 6, 13–23.
 
10.
BENOUAR D., AOUDIA A., MAOUCHE S., MEGHRAOUI M., 1994, The 18 August 1994 Mascara.
 
11.
(Algeria) earthquake, a quick-look report, Terra Nova, 6, 634–638.
 
12.
BEZZEGHOUD M., BUFORN E., 1999, Source parameters of the 1992 Melilla (Spain, Mw = 4.8), 1994.
 
13.
Alhoceima (Morocco, Mw = 5.8), and 1994 Mascara (Algeria, Mw = 5.7) earthquakes and seismotectonic.
 
14.
implications, Bulletin of the Seismological Society of America, 89 (2), 359–372.
 
15.
BEZZEGHOUD M., AYADI A., SEBAÏ A., AÏT-MESSAOUD M., MOKRANE A., BENHALLOU H.,.
 
16.
1996, Seismicity of Algeria between 1365 and 1989: Map of maximum observed intensities (MOI),.
 
17.
Avancesen Geofisica y Geodesia, 1, 107–114.
 
18.
CAMPBELL K.W., 1988, The Whittier Narrows, California earthquake of October 1, 1987 – preliminary.
 
19.
analysis of peak horizontal acceleration, Earthquake Spectra, 4 (1), 115–137.
 
20.
CAMPBELL K.W., 1989, The dependence of peak horizontal acceleration on magnitude, distance, and.
 
21.
site eects for small-magnitude earthquakes in California and eastern North America, Bulletin of the.
 
22.
Seismological Society of America, 79 (5), 1311–1346.
 
23.
CAMPBELL K.W., 1981, Near-Source Attenuation of Peak Horizontal Acceleration, B. Seism. Soc.
 
24.
Am., 71 (6), 2039–2070.
 
25.
CAMPBELL K.W., 1997, Empiritical near source attenuation relationship of horizontal and vertical.
 
26.
component of peak ground acceleration, peak ground velocity and pseudo absolute acceleration response.
 
27.
spectra, Seismo. Research Letters, 68 (1).
 
28.
CORNELL C.A., 1968, Engineering seismic risk analysis, Bulletin of the Seismological Society of.
 
29.
America, 58 (5), 1583–1606.
 
30.
DALLONI M., 1936, Carte géologique de Mascara, Service de la carte géologique de l’Algérie, Mascara – 212.
 
31.
DELTEIL J., 1974, Tectonique de la chaîne alpine en Algérie d’après l’étude du Tell oranais oriental.
 
32.
(Monts de la Mina, Béni-Chougrane, Dahra), Thèse Doct. es Sciences, Univ. Nice, p. 294.
 
33.
DOWRICK D.J., Rhoades D.A., 2004. Relations between earthquake magnitude and fault rupture.
 
34.
dimensions: How regionally variable are they?, Bulletin of the Seismological Society of America,.
 
35.
94 (3), 776–788.
 
36.
ESTEVA L., ROSENBLUETH E., 1964, Espectros de temblores a distancias moderadas y grandes,.
 
37.
Boletin Sociedad Mexicana de Ingenieria Sesmica, 2 (1), 1–18.
 
38.
Evaluation of seismic hazard using tectonic fault data: case of Beni-Chougrane Mountains... 141.
 
39.
Etude hydrogéologique quantitative du plateau de Mascara, 1969, (2ème rapport): Estimation des potentialités.
 
40.
en eau/SES. – Alger: Service des Etudes Scientifiques, BA.
 
41.
Global CMT Catalog Search, the 18 th mascara earthquake (http://www.globalcmt.org/CMTse...).
 
42.
HADJI R., BOUMAZBEUR A., LIMANI Y., BAGHEM M., CHOUABI A., 2013, Geologic, topographic.
 
43.
and climatic controls in landslide hazard assessment using GIS modeling: A case study of.
 
44.
Souk Ahras region, NE Algeria, Quaternary International, 302, 224–237.
 
45.
HADJI R., RAÏS K., GADRI L., CHOUABI A., HAMED Y., 2017, Slope failures characteristics and.
 
46.
slope movement susceptibility assessment using GIS in a medium scale: a case study from Ouled.
 
47.
Driss and Machroha municipalities, Northeastern of Algeria, Arabian Journal for Science and Engineering,.
 
48.
42, 281–300.
 
49.
HANKS T.C., KANAMORI H., 1979, A moment magnitude scale, Journal of Geophysical Research,.
 
50.
Vol. 82, 2981–2987.
 
51.
HARBI A., BENHALLOU H., 2006, Evaluation de l’Aléa Sismique en Algérie du Nord par la Modélisation.
 
52.
de l’Input Sismique dans les Zones Urbaines et l’Etablissement d’un Catalogue (Doctoral dissertation).
 
53.
IDRISS I.M., 1985, Evaluating seismic risk in engineering practice, p. 255–320, [in:] Proceeding of the.
 
54.
11th International conference on soil mechanics and foundation engineering, San Francisco, 12–16 août.
 
55.
1985, A.A. Balkema, Rotterdam, Vol. 1, 390 p.
 
56.
KARIM Z., HADJI R., HAMED Y., 2018, GIS-Based Approaches for the Landslide Susceptibility Prediction.
 
57.
in Setif Region (NE Algeria), Geotechnical and Geological Engineering, 37, 359, https://doi.org/.
 
58.
1007/s10706-018-0615-7.
 
59.
MAHDADI F., BOUMEZBEUR A., HADJI R., KANUNGO D.P., ZAHRI F., 2018, GIS-based landslide.
 
60.
susceptibility assessment using statistical models: a case study from Souk Ahras province, NE Algeria,.
 
61.
Arabian Journal of Geosciences, 11 (17), 476.
 
62.
MANCHAR N., BENABBAS C., HADJI R., BOUAICHA F., GRECU F., 2018, Landslide Susceptibility.
 
63.
Assessment in Constantine Region (NE Algeria) by Means of Statistical Models, Studia Geotechnica.
 
64.
et Mechanica, 40 (3), 208–219.
 
65.
MARINONI O., 2003, Improving geological models using a combined ordinary-indicator kriging approach,.
 
66.
Engineering Geology, 69 (1), 37–45.
 
67.
MCGUIRE R.K., 1976, FORTRAN computer program for seismic risk analysis, U.S. Geol. Survey open.
 
68.
– File Rept., 76–67.
 
69.
MCKENZIE D., 1972, Active Tectonics of the Mediterranean Dan. Publication: Geophysical Journal, Vol. 30,.
 
70.
Issue 2, pp. 109–185, Publication Date: 12/1972, Origin: CROSSREF, DOI: 10.1111/j.1365-246X.1972.
 
71.
MEGHRAOUI M., 1982, Etude néotectonique de la région NE d’El-Asnam: relation avec le séisme du.
 
72.
10 octobre 1980 (Doctoral dissertation, Thèse 3eme Cycle, University of Paris, 7, 210.
 
73.
MEGHRAOUI M., PONDRELLI S., 2013, Active faulting and transpression tectonics along the plate.
 
74.
boundary in North Africa, Annals of Geophysics, 55 (5).
 
75.
MEGHRAOUI M., 1988, Géologie des zones sismiques du Nord de l’Algérie: Paléosismologie, tectonique.
 
76.
active et synthèse sismotectonique (Doctoral dissertation, Paris 11).
 
77.
MEGHRAOUI M., CISTERNAS A., PHILIP H., 1986, Seismotectonics of the lower Cheliff basin:.
 
78.
structural background of the El Asnam (Algeria) earthquake, Tectonics, 5 (6), 809–836.
 
79.
MONTILLA J.A.P., DE GALDEANO C.S., CASADO C.L., 2003, Use of active fault data versus seismicity.
 
80.
data in the evaluation of seismic hazard in the Granada Basin (Southern Spain), Bulletin of.
 
81.
the Seismological Society of America, 93 (4), 1670–1678.
 
82.
MOUSSA K., 1996, Le Miocene de la bordure Nord des monts de Béni-Chougrane: Etude Stratigraphique.
 
83.
et Sedimentologique du secteur: Bou Ziri-Oued El Hammam, These de Magister, université.
 
84.
d’Es-Senia Oran, 206 p.
 
85.
142 Soraya REFAS et al.
 
86.
NEURDIN-TRESCARTES J., 1992, Le remplissage sédimentaire du bassin Néogène du Chélif, modèle.
 
87.
de référence de bassins intramontagneux (Doctoral dissertation, Pau).
 
88.
NEURDIN-TRESCARTES J., 1993, Evolution du bassin néogène du Chélif (Algérie nord-occidentale).
 
89.
Un exemple d’interaction sédimentation-tectonique, [in:] Bassins sédimentaires africains, Géodynamique.
 
90.
et géologie séquentielle, biominéralisation, sédimentation et organismes, 4◦ Colloque de.
 
91.
géologie africaine, Pau, pp. 25–29.
 
92.
NUTTLI O.W., 1983, Average seismic source-parameter relations for mid-plate earthquakes, Bulletin of.
 
93.
the Seismological Society of America, 73 (2), 519–535.
 
94.
PELAEZ J.A., LÓPEZ C., HENARES J., 2002, Deaggregation in magnitude, distance, and azimuth in.
 
95.
the south and west of the Iberian Peninsula, Bull. Seism. Soc. Am., 92, 2177–2185.
 
96.
PERRODON A., 1957, Etude géologique des bassins néogènes sublittoraux de l’Algérie occidentale.
 
97.
(Doctoral dissertation).
 
98.
ROTHÉ J.P., DECHEVOY N., SELTZER P., 1950, Les séismes de Kerrata et la séismicité de l’Algérie, Pauc.
 
99.
SLEMMONS D.B., 1977, State-of-the-Art for Assessing Earthquake Hazards in the United States, Report 6,.
 
100.
Faults and Earthquake Magnitude (No. WES-MP-S-73-1-6), Mackay school of mines renonv.
 
101.
SLEMMONS D.B., 1982, Determination of design earthquake magnitude for micronation, p. 119–130,.
 
102.
[in:] University of Washington (réd.), Proceedings of the 3rd International Earthquake Microzonation.
 
103.
Conference, Seattle, 28 juin–1er juillet 1982, Earthquake Society, Vol. 1, 805 p.
 
104.
STIRLING M.W., WESNOUSKY S.G., SHIMAZAKI K., 1996, Fault trace complexity, cumulative slip,.
 
105.
and the shape of the magnitude frequency distribution for strike slip faults: A global survey, Geophysical.
 
106.
Journal International, 124 (3), 833–868.
 
107.
STRASSER F.O., ARANGO M.C., BOMMER J.J., 2010, Scaling of the Source Dimensions of Interface and.
 
108.
Intraslab Subduction-zone Earthquakes with Moment Magnitude, Seism. Res. Lett., 81 (6), 941–950.
 
109.
THOMAS G., 1979, Sur l’existence d’une compression intra-miocène post-nappe dans le Tell méridional.
 
110.
oranais (Algérie), CR Somm. Soc. Géol. France, 2, 56–59.
 
111.
THOMAS G., 1985, Géodynamique d’un bassin intramontagneux. Le Bassin du Bas Chélif occidental (Algérie).
 
112.
durant le Mio-Plio-Quaternaire, Thèse Es-Sciences, Pau, 594 p., 162 figs., 32 tabl., 3 pl. h.t.
 
113.
TRAVELLETTI J., DELACOURT C., ALLEMAND P., MALET J.P., SCHMITTBUHL J., TOUSSAINT R.,.
 
114.
BASTARD M., 2012, Correlation of multi-temporal ground-based optical images for landslide monitoring:.
 
115.
Application, potential and limitations, ISPRS Journal of Photogrammetry and Remote Sensing,.
 
116.
70, 39–55.
 
117.
USGS 1994, US Geological Survey, the 18th 1994 Mascara earthquake data.
 
118.
VAKOV A.V., 1996, Relationships between earthquake magnitude, source geometry and slip mechanism,.
 
119.
Tectonophysics, 261 (1), 97–113.
 
120.
WELLS D.L., COPPERSMITH K.J., 1994, New empirical relationships among magnitude, rupture length,.
 
121.
rupture width, rupture area, and surface displacement, Bulletin of the seismological Society of.
 
122.
America, 84 (4), 974–1002.
 
123.
WESNOUSKY S.G., SCHOLZ C.H., SHIMAZAKI K., MATSUDA T., 1983, Earthquake frequency.
 
124.
distribution and the mechanics of faulting, J. Geophys. Res., 88 (B11), 9331–9340.
 
125.
WOODWARD-CLYDE C., 1983, Seismic exposure study, offshore, southern California, Report to Texaco.
 
126.
USA, New Orleans, 178 p.
 
127.
WYSS M., 1979, Estimating maximum expectable magnitude of earthquake from fault dimension, Geology,.
 
128.
Vol. 7, No. 7, 336–340.
 
129.
XIANG J., GAO D., 1994, The strong ground motion records obtained in Lancang-Gengma earthquake.
 
130.
in 1988, China, and their application, Rept. at International Workshop on Seismotectonics and Seismic.
 
131.
Hazard in Southeast Asia, Hanoi.
 
132.
YELLES-CHAOUCHE A., BOUDIAF A., DJELLIT H., BRACENE R., 2006, La tectonique active de la.
 
133.
région nord-algérienne, Comptes Rendus Geoscience, 338 (1), 126–139.
 
134.
ZŮVALA R., FIŠEROVÁ E., MAREK L., 2016, Mathematical aspects of the kriging applied on landslide.
 
135.
in Halenkovice (Czech Republic), Open Geosciences, 8 (1), 275–288.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top