PL EN
Influence of an empirical Geological Strength Index method for determining linear and nonlinear failure criteria
 
Więcej
Ukryj
1
Arturo Prat University, Chile
 
2
University of Talca, Chile
 
 
Autor do korespondencji
Angelica Vivanco   

Arturo Prat University, Chile
 
 
Mining Science 2024;31:199-218
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The construction of tunnels and underground galleries in mining has as fundamental input data the results of the failure criteria: traditionally Hoek-Brown and Mohr-Coulomb, to determine the failure envelopes that will allow the design of an economically exploitable mining system within viable safety frameworks that these criteria will guide. Therefore, the determination of rock mass resistance becomes fundamental and complex simultaneously due to the very nature of rock mass. Then, to identify a stressful state in which an excavation can be in conditions of stability it is necessary to have certain information both high in quality and economically valuable, which is not available in the early stages of the mining project. Thus, empirical methods and statistical relationships take notoriety, so this research evaluates the influence of an empirical method for the determination of the Geological Strength Index on the Mohr-Coulomb and Hoek-Brown failure criteria, with the benefit of estimating a stress field in which the excavation can self-sustain, evaluated in a first estimate in the pre-feasibility stage of the project, giving a guideline for design engineers. This research argues that the Geological Strength Index estimation method of Vivanco & Avendaño is recommended to estimate the Mohr-Coulomb failure criterion, but not the Hoek-Brown failure criterion.
REFERENCJE (46)
1.
BEJARBANEH B.Y., ARMAGHANI D.J., and AMIN M.F., 2015, Strength characterization of shale-using Mohr–Coulomb and Hoek–Brown criteria, Measurement, 63, 269–281/https://doi.org/10.1016/.j.mea....
 
2.
BIENIAWSKI Z.T., 2011, Errors in the Application of Geomechanical Classifications and Their Correc-tion, Ingeopres, 208, 10–21. Retrieved 2017, from https://img.interempresas.net/....
 
3.
BUDHU M., 2010, Soil mechanics and foundations, 3rd ed., I. John Wiley & Sons, Ed., New York, Wiley.
 
4.
COULOMB C.A., 1773, Essai sur une application des regles de maximis et minimis a quelques problemes de statique relatifs a 1’architecture, Mémoires de l’Académie Royale des Sciences, 7, 343–382.
 
5.
DAS B.M. and SIVAKUGAN N., 2016, Fundamentals of geotechnical engineering, J. Cárdenas, Trans., Cengage Learning.
 
6.
EBERHARDT E., 2012, The Hoek–Brown Failure Criterion. Rock Mechanics and Rock Engineering, 45, 981–988, https://doi.org/10.1007/s00603....
 
7.
GANERØD G.V., GRØNENG G., AARDAL I.B., and KVELDSVIK V., 2007, Logging of drill cores from seven boreholes at Åknes, Stranda municipality, Møre and Romsdal County. Geological Survey of Norway, Trondheim, Norway: NGU, Norges Geologiske Undersøkelse.
 
8.
GAVILANES J. and ANDRADE B., 2004, Introduction to Tunnel Engineering, Characterization, Classi-fication, and Geomechanical Analysis of Rock Masses, Ecuador: Ecuadorian Book Chamber – Pichincha Chapter.
 
9.
GONZÁLEZ DE VALLEJO L., FERRER M., ORTUÑO L., and OTEO C., 2002, Geological Engineer-ing, Madrid: Prentice Hall – Pearson Educación.
 
10.
HASSANPOUR J., KHOSHKAR A.S., FARASANI M.G., and HASHEMNEJAD A., 2022, Investigat-ing the relationships between rock mass classification systems based on data from mechanized tunnel-ing projects in Iran, Bulletin of Engineering Geology and the Environment, 147 (8), 1–19, https://doi.org/1007/s10064-02....
 
11.
HERNÁNDEZ SAMPIERI R., 2018, Research Methodology, DF, México: McGraw-Hill. Retrieved from https://www.uca.ac.cr/wp-conte....
 
12.
HOEK E., 2005, Uniaxial compressive strength versus Global strength in the criterion. Technical note for RocNews. Retrieved from Proceedings of the 5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference: NARMS-TAC 2002.
 
13.
HOEK E. and BROWN E.T., 1997, Practical estimates of rock mass strength, International Journal of Rock Mechanics and Mining Sciences, 34 (8), 1165–1186, https://doi.org/10.1016/S1365-....
 
14.
HOEK E. and MARINOS P., 2007, A brief history of the development of the failure criterion, Soils and Rocks, 2 (2), 2–13, https://doi.org/10.28927/sr.30....
 
15.
HOEK E., CARRANZA-TORRES C., and CORKUM B., 2002, Failure criterion – 2002 Edition. Procedimientos de NARMS-Tac, 1 (1), 267–273.
 
16.
HUAMAN A., ARDILES R., MENDIETA H., ARÍAS F., SALAS W., NIKAIDO E. and CURI N., 2017, Guide to Geomechanical Criteria for the Design, Construction, Supervision, and Closure of Un-derground Works, 1st ed., OSINERGMIN, Ed., Lima, Perú: Supervisory Agency for Investment in Energy and Mining of Peru. Retrieved 2022, from https://www.osinergmin.gob.pe/....
 
17.
Documentos/Publicaciones/Guia-Criterios-Geomecanicos.pdf.
 
18.
HUSSIAN S., MOHAMMAD N., UR REHMAN Z., KHAN N.M., SHAHZADA K., ALI S., …, SHERIN S., 2020, Review of the geological strength index (GSI) as an empirical classification and rock mass property estimation tool: origination, modifications, applications, and limitations, Advances in Civil Engineering, 1–18, https://doi.org/10.1155/2020/6....
 
19.
MARINOS P.G., 2007, The geological strength index (GSI): a characterization tool. Proceedings of the international workshop on rock mass classification in underground mining, 9498, 87–94. https://doi.org/.
 
20.
1201/noe0415450287.ch2.
 
21.
MARINOS V., MARINOS P., and HOEK E., 2005, The geological strength index: applications and limitations, Bull. Eng. Geol. Environ., 65, 55–65, https://doi.org/10.1007/s10064....
 
22.
MENG Q., WANG H., XU W., XIE W., WANG R., and ZHANG J., 2016, Robust equivalent tunnelling Mohr–Coulomb strength parameters for generalised Hoek–Brown media, European Journal of Envi-ronmental and Civil Engineering, 20, 841–860, https://doi.org/10.1080/196481....
 
23.
MOHAMMADI M., 2015, Comparing the generalized and Mohr–Coulomb failure criteria for stress analysis on the rocks failure plane, Geomechanics and Engineering, 9 (1), 115–124, https://doi.org/10.12989/.
 
24.
gae.2015.9.1.115.
 
25.
MOHR O., 1900, Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials, Zeitschrift des Vereins Deutscher Ingenieure, 46 (1524–1530), 1572–1577.
 
26.
MORELLI G., 2017, Alternative Quantification of the Geological Strength Index Chart for Jointed Rocks, Geotech. Geol. Eng., 35, 2803–2816, https://doi.org/10.1007/s10706....
 
27.
RAMÍREZ OYANGUREN P. and ALEJANO MONGE L.R., 2004, Rock Mechanics: Fundamentals and Slope Engineering. Retrieved from: https://oa.upm.es/14183/.
 
28.
RODRÍGUEZ S.S., VALERO J.D. and GÓMEZ C.L., 2018, Correlations of geomechanical indices for Andean environments. ISRM European Rock Mechanics Symposium-EUROCK 2018.
 
29.
ROS ÁVILA J., 2008, Failure Criteria and Geomechanical Classifications. In: J. Ros. Ávila, and UPM (Ed.), Comparative Analysis of the and Mohr–Coulomb Failure Criteria in the Study of Stability in Rock Masses, pp. 17–31, Polytechnic University of Catalonia. Retrieved from: http://hdl.handle.net/2099.1/6....
 
30.
SACHPAZIS C., 1986, In Geotechnical Description, Classification and Properties of Carbonate and Calcareous Rock Masses. Their Recording Procedure.
 
31.
SAEIDI A., CLOUTIER C., KAMALIBANDPEY A., and SHAHBAZI A., 2022, Evaluation of the Effect of Geomechanical Parameters and In Situ Stress on Tunnel Response Using Equivalent Mohr–Coulomb and Generalized Criteria, Geosciences, 12 (7), 262, https://doi.org/10.3390/geosci....
 
32.
SANTA C., GONÇALVES L., and CHAMINÉ H.I., 2019, A comparative study of GSI chart versions in a heterogeneous rock mass media (Marão tunnel, North Portugal): a reliable index in geotechnical surveys and rock engineering design, Bulletin of Engineering Geology and the Environment, 78 (8), 5889–5903, https://doi.org/10.1007/s10064....
 
33.
SOFIANOS A. and NOMIKOS P., 2006, Equivalent Mohr–Coulomb and generalized Hoek–Brown strength parameters for supported axisymmetric tunnels in plastic or brittle rock, Int. J. Rock Mech. Min. Sci., 43 (5), 683–704, https://doi.org/10.1016/j.ijrm....
 
34.
SUN D.A., YAO Y.P., and MATSUOKA H., 2006, Modification of critical state models by Mohr–Coulomb criterion, Mechanics Research Communications, 33 (2), 217–232. https://doi.org/10.1016/j.mech....
 
35.
05.006.
 
36.
VIVANCO A. and AVENDAÑO E., 2022, Proposal of a new method for calculating GSI, Mining Sci-ence, 29 (1), 93–104, https://doi.org/10.37190/msc22....
 
37.
WANG Y. and ALADEJARE A., 2016, Evaluating Variability and Uncertainty of Geological Strength Index at a Specific Site, Rock Mech. Rock Eng. (49), 3559–3573, https://doi.org/10.1007/s00603....
 
38.
XIA K., CHEN C., WANG T., PANG H., and LIU X., 2022, Quantification of the GSI and D values in the Hoek–Brown criterion using the rock quality designation (RQD) and discontinuity surface condi-tion rating (SCR), Bulletin of Engineering Geology and the Environment, 81 (1), 1–21, https://doi.org/10.1007/.
 
39.
s10064-021-02493-y.
 
40.
YAN B., WANG P., REN F., GUO Q., and CAI M., 2020, A review of mechanical properties and consti-tutive theory of rock mass anisotropy. Arabian Journal of Geosciences, 13, 1–16, https://doi.org/.
 
41.
1007/s12517-020-05536-y.
 
42.
YU M., 2002, Advances in strength theories for materials under complex stress state in the 20th century, Appl. Mech. Rev., 55 (3), 169–218, https://doi.org/10.1115/1.1472....
 
43.
ZHANG J. and SALGADO R., 2010, Stress–dilatancy relation for Mohr–Coulomb soils following a non-.
 
44.
-associated flow rule, Géotechnique, 60 (3), 223–226, https://doi.org/10.1680/geot.8....
 
45.
ZHANG L., 2016, Determination and applications of rock quality designation (RQD), Journal of Rock Mechanics and Geotechnical Engineering, 8 (3), 389–397. https://doi.org/10.1016/j.jrmg....
 
46.
ZHANG L., 2016, Engineering Properties of Rocks, 2nd ed., Butterworth–Heinemann, https://doi.org/1016/C2014-0-0....
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top