PL EN
Inteligentny system diagnostyki taśm przenośnikowych – koncepcja
 
Więcej
Ukryj
1
Politechnika Wrocławska: Zakład Systemów Maszynowych
 
2
Centrum im. Hugona Steinhausa, Instytut Matematyki i Informatyki
 
3
KGHM CUPRUM sp. z o.o.
 
 
Autor do korespondencji
Radosław Zimroz   

Politechnika Wrocławska: Zakład Systemów Maszynowych, ul. Na Grobli 15, 50-421 Wrocław
 
 
Mining Science 2014;21(Special Issue 2):99-109
 
SŁOWA KLUCZOWE
STRESZCZENIE
W pracy przedstawiono koncepcję inteligentnego systemu do diagnostyki taśm i komputerowego wspomagania zarządzania taśmami przenośnikowymi z wykorzystaniem podejścia „utrzymanie maszyn zależne od stanu” (ang. Condition Based Maintenance). Omówiono strukturę systemu oraz wybrane kluczowe elementy. Niektóre z modułów zostały już zrealizowane, inne są w trakcie realizacji. Stąd też artykuł traktuje raczej o koncepcji niż o gotowym produkcie. Systemowe ujęcie problemu jest niezbędne ze względu na docelowo szerszy kontekst zarządzania systemem przenośników a nie tylko taśm, układów napędowych czy innych elementów. Kluczowym elementem artykułu jest wykorzystanie elementów uczenia maszynowego do wspomagania zarządzania. Dotyczą one walidacji danych, wyznaczania progów decyzyjnych, decyzji o dopuszczeniu do eksploatacji/wymianie taśmy, czy elementów prognozy czasu życia odcinka taśmy czy połączenia. Zastosowanie sztucznej inteligencji wydaje się konieczne ze względu na konieczność budowania obiektywnej wiedzy w sformalizowanej postaci w zakresie eksploatacji taśm przenośnikowych.
 
REFERENCJE (26)
1.
MATHER D., 2002, CMMS: a time saving implementation process. New York. USA: CRC Press.
 
2.
LABIB A.W., 2004, A decision analysis model for maintenance policy selection using a CMMS. Journal of Quality in Maintenance Engineering; 10(3): 191-20.
 
3.
O’DONOGHUE C.D., PRENDERGAST J.G., 2004, Implementation and benefits of introducing a computerised maintenance management system into a textile manufacturing company. Journal of Materials Processing Technology; 153-154: 226-232.
 
4.
LODEWIJKS, G., 2004, Strategies for Automated Maintenance of Belt Conveyor Systems. Bulk Solids Handling; 24(1):16-22.
 
5.
KACPRZAK M., KULINOWSKI P., WĘDRYCHOWICZ D., 2011, Computerized information system used for management of mining belt conveyors operation. Eksploatacja i Niezawodność – Maintenance and Reliability; 50(2):81-93.
 
6.
ZIMROZ R., KRÓL R., HARDYGÓRA M., GÓRNIAK-ZIMROZ J., BARTELMUS W., GŁADYSIEWICZ L., BIERNAT S., 2011, A maintenance strategy for drive units used in belt conveyors network, 22nd World Mining Congress & Expo, 11-16 September, Istanbul-2011. Vol. 1 / ed. ŞinasiEskikaya. Ankara: Aydoğdu Ofset, s. 433-440.
 
7.
SAHARKHIZ E., BAGHERPOUR M., FEYLIZADEH M. R., AFSARI A., 2012, Software performance evaluation of a computerized maintenance management system: a statistical based comparison. Eksploatacja i Niezawodność – Maintenance and Reliability; 14(1): 77-83.
 
8.
GALAR D, GUSTAFSON A, TORMOS B, BERGES L., 2012, Maintenance Decision Making based on different types of data fusion. Eksploatacja i Niezawodność – Maintenance and Reliability; 14 (2): 135–144.
 
9.
STEFANIAK P. K, ZIMROZ R., KRÓL R., GÓRNIAK-ZIMROZ J., BARTELMUS W., HARDYGÓRA M., 2012, Some remarks on using condition monitoring for spatially distributed mechanical system belt conveyor network in underground mine - a case study. Proceedings of the Second International Conference "Condition Monitoring of Machinery in Non-Stationary Operations", CMMNO' 2012 / ed. TaharFakhfakh et al. Springer, pp. 497-507 http://dx.doi.org/10.1007/978-....
 
10.
STEFANIAK P., SAWICKI M., KRÓL R., ZIMROZ R., 2012, Perspektywy rozwoju systemu zarządzania parkiem maszynowym Diag MANAGER w oparciu o zebrane doświadczenia eksploatacyjne. Napędy i Sterowanie; 7/8: 84-88.
 
11.
JARDINE A.K.S., LIN D., BANJEVIC D. A., 2006, Review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing; 20:1483–510.
 
12.
HENG A., ZHANG S., TAN A.C.C., MATHEW J., 2009, Rotating machinery prognostics: State of the art, challenges and opportunities, Mechanical Systems and Signal Processing 23/3, 724–739.
 
13.
JABŁONSKI A., BARSZCZ T., Validation of vibration measurements for heavy duty machinery diagnostics, Mechanical Systems and Signal Processing 38/1, pp 248-263.
 
14.
ZIMROZ R., WODECKI J., KRÓL R., ANDRZEJEWSKI M., ŚLIWIŃSKI P., STEFANIAK P. K., 2014, Self-propelled mining machine monitoring system - data validation, processing and analysis. Germany, 14th-19th October 2013. Vol. 2 / Carsten Drebenstedt, Raj Singhal (eds.). Cham [i in.]: Springer, s. 1285-1294.
 
15.
BŁAŻEJ R., JURDZIAK L., HARDYGÓRA M., ZIMROZ R., 2013, Propozycja metody przetwarzania wielowymiarowego sygnału NDT na potrzeby oceny stanu technicznego taśmy z linkami stalowymi. Górnictwo Odkrywkowe, R. 54, nr 3/4, s. 93-98.
 
16.
BŁAŻEJ R., JURDZIAK L, ZIMROZ R., 2013, Novel approaches for processing of multi-channels NDT for damage detection in conveyor belts with steel cords. Key Engineering Materials, vol. 569/570, pp. 978-985.
 
17.
RAFAJŁOWICZ E., RAFAJŁOWICZ W., 2010, Wstęp do przetwarzania obrazów przemysłowych [Dokument elektroniczny], Oficyna Wydawnicza Politechniki Wrocławskiej, 235 s. http://www.dbc.wroc.pl/publica....
 
18.
DOMAŃSKI A., Praca inżynierska, Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej.
 
19.
MACHULA T., 2011, Opracowanie metody ciągłej analizy stanu technicznego taśm przenośnikowych z linkami stalowymi, praca doktorska Wydział Inżynierii Mechanicznej i Robotyki, Katedra Transportu Linowego Akademii Górniczo-Hutnicza, Kraków.
 
20.
KWAŚNIEWSKI J., 2010 Sztuczna inteligencja w systemie monitorowania stanu technicznego taśm z linkami stalowymi, Transport Przemysłowy i Maszyny Robocze 3, 32–35.
 
21.
TAK-CHUNG F., 2011, A review on time series data mining, Engineering Applications of Artificial Intelligence 24/1, 164–181, DOI: 10.1016/j.engappai.2010.09.007.
 
22.
JARDINE A.K.S., 2002, Optimizing condition based maintenance decisions, in: Proceedings of the Annual Reliability and Maintainability Symposium, pp. 90–97.
 
23.
DRAGOMIR O. E., GOURIVEAU R., DRAGOMIR F., MINCA E., ZERHOUNI N., 2009, Review of Prognostic Problem in Condition-Based Maintenance, published in "European Control Conference, ECC'09., Budapest: Hungary".
 
24.
CEMPEL C., 1990, Limit value in practice of vibration diagnosis, Mechanical Systems and Signal Processing 4/6.
 
25.
BROOKS R., THORPE R., WILSON J., 2004, A new method for defining and man-aging process alarms and for correcting process operation when an alarm occurs, Journal of Hazardous Materials 115.
 
26.
JABŁOŃSKI A., BARSZCZ T., BIELECKA M., BREUHAUS P., 2013, Modeling of probability distribution functions forautomatic threshold calculation in condition monitoring systems, Measurement, Vol. 46/1, p. 727-738.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top