PL EN
Intelligent diagnostic system for conveyor belt maintenance
 
More details
Hide details
1
Politechnika Wrocławska: Zakład Systemów Maszynowych
 
2
Centrum im. Hugona Steinhausa, Instytut Matematyki i Informatyki
 
3
KGHM CUPRUM sp. z o.o.
 
 
Corresponding author
Radosław Zimroz   

Politechnika Wrocławska: Zakład Systemów Maszynowych, ul. Na Grobli 15, 50-421 Wrocław
 
 
Mining Science 2014;21(Special Issue 2):99-109
 
ABSTRACT
The paper deals with the concept of an intelligent system for the damage detection, diagnosis and computer-aided maintenance management system for conveyor belts using the Condition Based Maintenance approach. The structure of the system and some key elements are described in the paper. Some modules of the system have been already completed, while others are under construction. Hence the article deals with the concept rather than a finished product. Holistic view to the problem is necessary because ultimately the wider context of the conveyor system maintenance management system is expected. A Diag Manager, precursor of proposed intelligent system, has been developed several years ago for transmissions used in conveyor drives. Our intent is to exploit experience with Diag Manager and to extend this idea to belts and other components of the conveyor in future. A key element of this article is to use the elements of artificial intelligence (AI) and machine learning to support maintenance management. AI might relate to data validation, determining the decision thresholds, the decision regarding release to continue service or exchange the belt. Application of artificial intelligence seems to be necessary due to necessary development of objective knowledge in a formalized form regarding the operation of conveyor belts.
REFERENCES (26)
1.
MATHER D., 2002, CMMS: a time saving implementation process. New York. USA: CRC Press.
 
2.
LABIB A.W., 2004, A decision analysis model for maintenance policy selection using a CMMS. Journal of Quality in Maintenance Engineering; 10(3): 191-20.
 
3.
O’DONOGHUE C.D., PRENDERGAST J.G., 2004, Implementation and benefits of introducing a computerised maintenance management system into a textile manufacturing company. Journal of Materials Processing Technology; 153-154: 226-232.
 
4.
LODEWIJKS, G., 2004, Strategies for Automated Maintenance of Belt Conveyor Systems. Bulk Solids Handling; 24(1):16-22.
 
5.
KACPRZAK M., KULINOWSKI P., WĘDRYCHOWICZ D., 2011, Computerized information system used for management of mining belt conveyors operation. Eksploatacja i Niezawodność – Maintenance and Reliability; 50(2):81-93.
 
6.
ZIMROZ R., KRÓL R., HARDYGÓRA M., GÓRNIAK-ZIMROZ J., BARTELMUS W., GŁADYSIEWICZ L., BIERNAT S., 2011, A maintenance strategy for drive units used in belt conveyors network, 22nd World Mining Congress & Expo, 11-16 September, Istanbul-2011. Vol. 1 / ed. ŞinasiEskikaya. Ankara: Aydoğdu Ofset, s. 433-440.
 
7.
SAHARKHIZ E., BAGHERPOUR M., FEYLIZADEH M. R., AFSARI A., 2012, Software performance evaluation of a computerized maintenance management system: a statistical based comparison. Eksploatacja i Niezawodność – Maintenance and Reliability; 14(1): 77-83.
 
8.
GALAR D, GUSTAFSON A, TORMOS B, BERGES L., 2012, Maintenance Decision Making based on different types of data fusion. Eksploatacja i Niezawodność – Maintenance and Reliability; 14 (2): 135–144.
 
9.
STEFANIAK P. K, ZIMROZ R., KRÓL R., GÓRNIAK-ZIMROZ J., BARTELMUS W., HARDYGÓRA M., 2012, Some remarks on using condition monitoring for spatially distributed mechanical system belt conveyor network in underground mine - a case study. Proceedings of the Second International Conference "Condition Monitoring of Machinery in Non-Stationary Operations", CMMNO' 2012 / ed. TaharFakhfakh et al. Springer, pp. 497-507 http://dx.doi.org/10.1007/978-....
 
10.
STEFANIAK P., SAWICKI M., KRÓL R., ZIMROZ R., 2012, Perspektywy rozwoju systemu zarządzania parkiem maszynowym Diag MANAGER w oparciu o zebrane doświadczenia eksploatacyjne. Napędy i Sterowanie; 7/8: 84-88.
 
11.
JARDINE A.K.S., LIN D., BANJEVIC D. A., 2006, Review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing; 20:1483–510.
 
12.
HENG A., ZHANG S., TAN A.C.C., MATHEW J., 2009, Rotating machinery prognostics: State of the art, challenges and opportunities, Mechanical Systems and Signal Processing 23/3, 724–739.
 
13.
JABŁONSKI A., BARSZCZ T., Validation of vibration measurements for heavy duty machinery diagnostics, Mechanical Systems and Signal Processing 38/1, pp 248-263.
 
14.
ZIMROZ R., WODECKI J., KRÓL R., ANDRZEJEWSKI M., ŚLIWIŃSKI P., STEFANIAK P. K., 2014, Self-propelled mining machine monitoring system - data validation, processing and analysis. Germany, 14th-19th October 2013. Vol. 2 / Carsten Drebenstedt, Raj Singhal (eds.). Cham [i in.]: Springer, s. 1285-1294.
 
15.
BŁAŻEJ R., JURDZIAK L., HARDYGÓRA M., ZIMROZ R., 2013, Propozycja metody przetwarzania wielowymiarowego sygnału NDT na potrzeby oceny stanu technicznego taśmy z linkami stalowymi. Górnictwo Odkrywkowe, R. 54, nr 3/4, s. 93-98.
 
16.
BŁAŻEJ R., JURDZIAK L, ZIMROZ R., 2013, Novel approaches for processing of multi-channels NDT for damage detection in conveyor belts with steel cords. Key Engineering Materials, vol. 569/570, pp. 978-985.
 
17.
RAFAJŁOWICZ E., RAFAJŁOWICZ W., 2010, Wstęp do przetwarzania obrazów przemysłowych [Dokument elektroniczny], Oficyna Wydawnicza Politechniki Wrocławskiej, 235 s. http://www.dbc.wroc.pl/publica....
 
18.
DOMAŃSKI A., Praca inżynierska, Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej.
 
19.
MACHULA T., 2011, Opracowanie metody ciągłej analizy stanu technicznego taśm przenośnikowych z linkami stalowymi, praca doktorska Wydział Inżynierii Mechanicznej i Robotyki, Katedra Transportu Linowego Akademii Górniczo-Hutnicza, Kraków.
 
20.
KWAŚNIEWSKI J., 2010 Sztuczna inteligencja w systemie monitorowania stanu technicznego taśm z linkami stalowymi, Transport Przemysłowy i Maszyny Robocze 3, 32–35.
 
21.
TAK-CHUNG F., 2011, A review on time series data mining, Engineering Applications of Artificial Intelligence 24/1, 164–181, DOI: 10.1016/j.engappai.2010.09.007.
 
22.
JARDINE A.K.S., 2002, Optimizing condition based maintenance decisions, in: Proceedings of the Annual Reliability and Maintainability Symposium, pp. 90–97.
 
23.
DRAGOMIR O. E., GOURIVEAU R., DRAGOMIR F., MINCA E., ZERHOUNI N., 2009, Review of Prognostic Problem in Condition-Based Maintenance, published in "European Control Conference, ECC'09., Budapest: Hungary".
 
24.
CEMPEL C., 1990, Limit value in practice of vibration diagnosis, Mechanical Systems and Signal Processing 4/6.
 
25.
BROOKS R., THORPE R., WILSON J., 2004, A new method for defining and man-aging process alarms and for correcting process operation when an alarm occurs, Journal of Hazardous Materials 115.
 
26.
JABŁOŃSKI A., BARSZCZ T., BIELECKA M., BREUHAUS P., 2013, Modeling of probability distribution functions forautomatic threshold calculation in condition monitoring systems, Measurement, Vol. 46/1, p. 727-738.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top