PL EN
MICROSTRUCTURE AND GEOTECHNICAL CHARACTERISTICS ‎OF A HIGHLY PLASTIC ‎CLAY TREATED BY MAGNESIUM ‎CHLORIDE ‎
 
More details
Hide details
1
Laboratory of Research in Applied Hydraulics, LRHYA, Faculty of Technology, Department of ‎Civil ‎Engineering, University of Mostefa Ben Boulaid, Batna 2, Algeria.‎
 
2
CGI. Technical Services, 1612 Insight Place, Redding, California, 9600 USA‎
 
 
Corresponding author
Ouassila Bahloul   

Laboratory of Research in Applied Hydraulics, LRHYA, Faculty of Technology, Department of ‎Civil ‎Engineering, University of Mostefa Ben Boulaid, Batna 2, Algeria.‎
 
 
Mining Science 2019;26:249-262
 
KEYWORDS
TOPICS
ABSTRACT
Chemical stabilization of soil is an effective improvement technique because it reduces the ability of ‎the soil ‎to swell. We added different proportions of magnesium chloride to an expansive clay and ‎performed ‎swelling, geotechnical characterization, and mechanical strength tests. The results show ‎that the swelling ‎potential and swelling pressure of the expansive soil were significantly decreased ‎by the addition of ‎magnesium chloride (MgCl2). This treatment also improved the physical and ‎mechanical characteristics and ‎microstructure of the soil. The soil’s plastic limit, shrinkage limit, ‎cohesion, and internal friction angle all ‎increased linearly with the addition of the MgCl2 stabilizer. ‎However, we observed that the liquid limit of the ‎soil decreased as the level of magnesium chloride ‎was increased.‎
REFERENCES (32)
1.
ABOU-BKER N., SIDI MOHAMED A.M., ‏2004, Stabilization of Swilling Soils Using Salt. Conference International de Geotechnique, Beyrouth, 1–6.
 
2.
‎AL-RAWAS A.A., HUGO A.W., AL-SARMI H., 2005, Effect of Lime, Cement and Sarooj (Artificial ‎Pozzolan) on the Swelling Potential of an Expansive Soil from Oman, Building and Environment, ‎Vol. 40, 681–687, DOI: 10.1016/j.buildenv.2004.08.028.‎.
 
3.
‎ASTM D 4546-96 method A, One-Dimensional Swell or Settlement Potential of Cohesive ‎Soils, American Society for Testing and Materials.
 
4.
AZZOUZ F.Z.‎, 2015, ‎Stabilisation des Sols Argileux de la Région de Tlemcen par les Sels, Revue El ‎Wahat pour les Recherches et les Études, Vol. 8, No. 1, 108–117.‎.
 
5.
BARRY P.V., STOTT D.E., TURCO R.F., BRADFORD J.M.,‎‏ 1991, ‏Organic Polymers Effect on Soil Shear ‎Strength and Detachment by Single Raindrops, Soil Science Society of America Journal, Vol. 55, ‎No. 3, 799–804, DOI: 10.2136/sssaj1991.03615995005500030028x.
 
6.
BELABBACI Z., MAMOUNE S., BEKKOUCHE A., 2012, ‎‏‏Laboratory Study of the Influence of Mineral ‎Salts on Swelling (KCl, MgCl2), Earth Science Research Journal, Vol. 2, No. 2, 135–142.
 
7.
‎BEKHOUCHE H., ABBECHE K., DUC M., BAHLOUL O., DELAGE P., 2018, ‏The Swelling and Shrinkage ‎Properties of Clay-Rich Soils after Cement Treatment A Microstructural Approach, Italian Journal ‎of Engineering Geology and Environment, Vol. 2, 5–22, DOI: 10.4408/IJEGE.2018-02.O-‎‎01.
 
8.
BREEN C., 1999, The Characterization and Use of Polycation-Exchanged Bentonites‏, Applied Clay ‎Science, Vol. 15, 187–219, DOI: 10.1016/S0169-1317(99)00024-1.‎.
 
9.
‎BOUROKBA S.A., HACHICHI A., SOULI H., TAIBI S., FLEUREAU J.M., 2015, Effect of Lime on Some ‎Physical Parameters of a Natural Expansive Clay from Algeria, European Journal Environmental ‎Civil Engineering, 108–125, DOI: 10.1080/19648189.2015.1093963.
 
10.
BIGOT G., ZERHOUNI M.I., 2000,‎‏ Retrait, Gonflement et Tassement des Sols Fins, Bulletin des ‎Laboratoires des Ponts et Chaussées, No. 229, 105–114.
 
11.
CHEN F.H, 1988, Foundations on Expansive Soils‏‎. Developments in Geotechnical ‎Engineering, ‎Elsevier Publishing, 54–464.
 
12.
DAKSHANAMURTHY V., RAMAN V, 1973, A Simple Method of Identifying an Expansive Soil‏‏‎, Soils ‎and Foundations, Vol. 13, No. 1, 97–104, DOI: 10.3208/sandf1972.13.97.
 
13.
DERRICHE Z., LAZZALI F.,‎ 1997, Analyse des Mécanismes de Stabilisation d’un Sol Gonflant par ‎Apport de Chaux sous Différentes Formes, Engineering Geology and the Environment, Vol. 1,.
 
14.
79–84.‎.
 
15.
DJELLOUL R., BOUROKBA S.A., HACHICHI A., FLEUREAU J.M.‎‏, 2018, Effect of Cement on the Drying-‎Wetting Paths and on Some Engineering Properties of a Compacted Natural Clay from Oran, ‎Algeria‏‏‎, Geotechnical and Geological Engineering, Vol. 36, No. 2, 995-1010, DOI: ‎‎10.1007/s10706-017-0370-1.
 
16.
‎DIDIER‎ G., 1972, Gonflement Cristallin et Macroscopique des Montmorillonites sa Prévision, Thèse ‎Doctorat, Institut National Science Application, Université Claude Bernard ‎France, 99–110.
 
17.
GANGADHARA REDDY N., TAHASSILDAR J., HANUMANTHA RAO B., 2015, ‎‏‏Evaluating the Influence of ‎Additives on Swelling Characteristics of Expansive Soils, International Journal of Geosynth and ‎Ground Engineering, 1–7, DOI:10.1007//s40891-015-0010-x.‎.
 
18.
HACHICHI A., FLEUREAU‏ J.M., 1999, Caractérisation et Stabilisation de quelques Sols Gonflants ‎d’Algérie‏‏‎, Revue Française de Géotechniques, 37–55.
 
19.
JOHSON R., RAFAT S., ADEBOJE P.E., ‎2016, Stabilization Potential of Cement Kiln Dust Treated ‎Lateric Soil, International Journal of Engineering Research in Africa, Vol. 23, 52–63.
 
20.
‎KHEMISSA M., MAHAMEDI A., 2014, Cement and Lime Mixture Stabilization of an Expansive Over ‎Consolidated Clay, Applied Clay Science, Vol. 95, 104–110, DOI:10.1016/j.clay.03.017 0169-1317.
 
21.
‎‎KHEMISSA M., MAHAMEDI A., MEKKI L., 2017, ‏Laboratory investigation of the treatment ‎effects by hydraulic binders on the physical and mechanical properties of an over consolidated ‎expansive clay‏‏‎, International Journal of Geotechnical Engineering, 1–14, DOI: ‎‎10.1080/19386362.2017.1376816.
 
22.
‎‎‎KHOUDIR K., ‏MESSAOUD H., 2018, ‎‏Contribution to the Geotechnical Study and Estimation for ‎Differential Settlements of Mila Region Soils (North-East Algeria), Journal of Advanced Research in ‎Science and Technology, 818–828.‎‏.
 
23.
‎LOUAFI ‎B., BAHAR R., 2012, Sand: an additive for stabilization of swelling clay soils, International ‎Journal of Geoscience, Vol. 3, 719–725, DOI: 10.4236/ijg.2012.34072.‎.
 
24.
‎MINGLEI G., 2013, Experimental Study of Expansive Soil Improved by Limem, Advanced Materials ‎Research, 991–994, DOI: 10.4028//www.scientific.net/AMR.838-841.991.
 
25.
NF P94-051, 1993, Determination of Atterberg’s Limits. Liquid Limit Test Using ‎Casagrande.
 
26.
NF P94-050, 1995, Determination of Moisture Content. Oven Drying Method.
 
27.
NF P94-053, 1991, Determination of Density of Fine Soils in the Laboratory.
 
28.
NF P94-056, 1996, Granulometric Analysis. Dry Sieving Method After Washing.
 
29.
NF P94-057, 1992, Granulometric Analysis. Hydrometer Method.
 
30.
NF P94-048, 1996, Determination of the Carbonate Content – Calcimeter Method.
 
31.
NF P94-071, 1994, Direct Shear Test With Shearbox Apparatus. Part 1: Direct ‎Shear.
 
32.
TURKOZ M., SAVAS H., ACAZ A., TOSUN H., 2014, The effect of Magnesium Chloride Solution on the Engineering Properties of Clay Soil With Expansive and Dispersive Characteristics, Applied Clay Science, Vol. 101, 1–9, doi.org/10.1016/j.clay.2014.08.007.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top