PL EN
Methane Emissions and Hard Coal Production in the Upper Silesian Coal Basin in Relation to the Greenhouse Effect Increase in Poland in 1994-2018
 
 
More details
Hide details
1
Univesrity of Silesia
 
 
Corresponding author
Marcin Dreger   

Univesrity of Silesia
 
 
Mining Science 2021;28:59-76
 
KEYWORDS
TOPICS
ABSTRACT
The Upper Silesian Coal Basin (USCB) is the largest coal basin in Poland and one of the largest in Europe. It is the most industrialised region in the country. The main natural source of energy is hard coal, which was produced by 65 mines in the early nineties. The USCB geology is very diverse and not homogeneous. Coal deposits situated in the central, southern, and western regions are mostly covered by impermeable Miocene deposits, which helped methane (CH4) to accumulate in the past. Methane is one of the most dangerous natural hazards in Polish underground mining because it is an explosive gas. CH4 is also the second strongest greenhouse gas after carbon dioxide, but its radiative power is 20-25 times stronger than the radiative power of CO2. Polish coal mines release 470 thousand Mg (average) of CH4 yearly and it contributes to the greenhouse effect increase. Year after year, Upper Silesian coal mines are going to extract hard coal from deeper seams where the methane content in coal seams is much higher. To keep workers safe, CH4 needs to be captured and released to the open-air atmosphere or used in the power and heat production.
REFERENCES (39)
1.
ADLER M.J. (Ed.), 1994, International anthropogenic methane emissions: estimates for 1990. Report to Congress, U.S. EPA Report 230R-93-010.
 
2.
Annual Report, 1995–2017, Annual Report (for the years 1994-2017) on the state of basic natural and technical hazards in the hard coal mining industry, Gas Hazard. Publ. Central Mining Institute, Ka-towice (in Polish).
 
3.
ARCHER D., 2011, Globalne ocieplenie: zrozumieć prognozę, PWN Publishing House, Warsaw (in Polish).
 
4.
BATES J., 1998, A strategy for reducing methane emissions, Studies in Environmental Science, Vol. 72, pp. 245–264.
 
5.
BEDNORZ J., 2011, Socio-economical effects of hard coal mining in Poland, Górnictwo i Geologia, 6(4) (in Polish).
 
6.
Best Practice Guidance, 2010, Best Practice Guidance for effective methane drainage and use in coal mines, ECE Energy Series 31, Economic commission for Europe. Methane to markets partnership, United Nations, New York and Geneva [https://www.unece.org/fileadmi....
 
7.
pub/BestPractGuide_MethDrain_es31.pdf].
 
8.
Central Statistical Office, 2005–2020, Resources, Use, Pollution and Protection of Waters, in: Environ-ment, Central Statistical Office, Warsaw (in Polish).
 
9.
CURNOW M., 2020, Carbon farming: reducing methane emissions from cattle using feed additives, [https://www.agric.wa.gov.au/cl...-.
 
10.
feed-additives] [available: February 2021].
 
11.
CRUTZEN P.J., A discussion of the chemistry of some minor constitutents in the stratosphere and tropo-sphere, Pure Appl. Geophys., 1973, 106–108, 1385–1399.
 
12.
CZAPLIŃSKI A. (Ed.), 1994, Węgiel kamienny, University of Science and Technology Publishing House, Kraków (in Polish).
 
13.
DREGER M., 2019, Methane emission in selected hard-coal mines of the Upper Silesian Coal Basin in 1997–2016, Geology, Geophysics and Environment, Vol. 45(2), 121–132.
 
14.
DREGER M., 2020, Changes in the methane emissions and hard coal output in the Brzeszcze mine (the Upper Silesian Coal Basin, Poland), Geology, Geophysics & Environment, Vol. 46(2), 159–174.
 
15.
DREGER M., KĘDZIOR S., 2019, Methane emissions and demethanation of coal mines in the Upper Silesian Coal Basin between 1997 and 2016, Environmental and Socio-economic Studies, 7, 1, 12–23.
 
16.
EU Emissions Trading System [https://ec.europa.eu/clima/pol...] [available: May 2020].
 
17.
EU Final Report, 1998, Options to Reduce Methane Emissions (Final Report), AEAT-3773, Issue 3.
 
18.
GINTY E., 2016, Australia’s coal mines are pouring methane gas into the atmosphere. Available online at June 2019, https://theconversation.com/au....
 
19.
-55394.
 
20.
Global Methane Initiative, 2020, Global Methane Emissions and Mitigation Opportunities, [https://.
 
21.
www.globalmethane.org/documents/analysis_fs_en.pdf] [available: February 2021].
 
22.
GRZYBEK I., KĘDZIOR S., 2005, The differentiation of gases condition in the Upper Silesia Coal Basin and methane migration possibilities from non-working coal mines (Zróżnicowanie warunków gazowych Górnośląskiego Zagłębia Węglowego a możliwości migracji metanu ze zlikwidowanych kopalń węgla kamiennego). Zeszyty Naukowe Politechniki Śląskiej – Górnictwo, Vol. 268, The Silesian Technical University Publications, Gliwice, 55–66 (in Polish).
 
23.
HONYSZ J., 2015, Górnictwo 2, Silesia Publishing House, Katowice (in Polish).
 
24.
Institute of Environmental Protection – National Research Institute, 2020, A national inventory report 2020 – inventory of greenhouse gases in Poland from 1988 to 2018. Synthetic Report, Warsaw 2020 (in Polish).
 
25.
JURECZKA J., STRZEMIŃSKA K., KRIEGER W. et. al., 2015, Dokumentacja geologiczna otworów badawczych.
 
26.
Wesoła PIG 1 oraz Wesoła PIG – 2H intersekcyjnie połączonych, Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Oddział Górnośląski im. St. Doktorowicza-Hrebnickiego, Sosnowiec (in Polish).
 
27.
KARACAN C.Ö., RUIZ, F.A., COTÈ M., PHIPPS S., 2011, Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction, Int. J. Coal Geol., 86, 121–156.
 
28.
KĘDZIOR S., 2009, The issue of emission and gathering mining methane on the example of selected working coal mines in southern part of the Upper Silesian Coal Basin (Problem emisji i ujmowania metanu kopalnianego na przykładzie wybranych czynnych kopalń południowej części Górnośląskiego Zagłębia Węglowego), Górnictwo Odkrywkowe, 2–3, 79–83 (in Polish).
 
29.
KĘDZIOR S., 2012, Przystropowa strefa gazonośna w utworach karbonu południowej części Górnośląskiego Zagłębia Węglowego: występowanie, parametry zbiornikowe węgla oraz możliwości pozyskania metanu, University of Silesia Publications, Katowice (in Polish).
 
30.
KĘDZIOR S., DREGER M., 2019, Methane occurrence, emissions and hazards in the Upper Silesian Coal Basin, Poland International Journal of Coal Geology, Vol. 211, 103226.
 
31.
KOTAS A. (Ed.), 1994, Coalbed Methane Potential of the Upper Silesian Coal Basin, Poland, Works of Polish Geological Institute, 142, Polish Geological Institute, Warsaw.
 
32.
KUNDZEWICZ W, 2013, Cieplejszy świat: rzecz o zmianach klimatu, PWN Publishing House, Warsaw (in Polish).
 
33.
KOTARBA M., NEY R., 1995, Hydrocarbons in Carboniferous deposits in the Upper Silesia Coal Basin, [in:] Method and results development of gases accumulation in Carboniferous strata in the Upper Silesia Coal Basin (Węglowodory w utworach węglonośnych górnego karbonu Górnośląskiego Zagłębia Węglo-.
 
34.
wego, [w:] Opracowanie modeli oraz bilansu generowania i akumulacji gazów w serii węglonośnej Górnośląskiego Zagłębia Węglowego), Publ: PPGSMiE Centre, Kraków, 7–24 (in Polish).
 
35.
KOZŁOWSKI B., GRĘBSKI Z., 1982, Odmetanowanie Górotworu w Kopalniach, Silesia Publishing House, Katowice (in Polish).
 
36.
KOŻUCHOWSKI K., PRZYBYLAK R., 1995, Efekt cieplarniany, Publ. Wiedza Powszechna (Common Knowledge), Warsaw (in Polish).
 
37.
Kyoto Protocol, Kyoto Protocol - Targets for the first commitment period, available online June 2019, https://.
 
38.
unfccc.int/process-and-meetings/the-kyoto-protocol/what-is-the-kyoto-protocol/kyoto-protocol-targets-.
 
39.
for-the-first-commitment-period.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top