Numerical Simulation Study On Fire Hazard Of A Coal Mine Transport Roadway
Więcej
Ukryj
1
State Key Laboratory of High-Efficient Mining and Safety of Metal Mines (University of Science and Technology Beijing), Ministry of Education, Beijing 100083, China
2
School of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi Province, 710054, China
Autor do korespondencji
Zhian Huang
State Key Laboratory of High-Efficient Mining and Safety of Metal Mines (University of Science and Technology Beijing), Ministry of Education, Beijing 100083, China
Mining Science 2022;29:33-52
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Ze względu na szczególne struktury i otoczenie geograficzne głównej drogi transportowej podziemnych kopalń węgla, trudno jest radzić sobie z wypadkami i ratownictwem w przypadku pożaru i łatwo jest spowodować ofiary i uszkodzenia strukturalne jezdni. W tym badaniu ustalono model pożaru jezdni przy użyciu oprogramowania FDS na podstawie analizy teoretycznej. Dyfuzja dymu, rozkład temperatury i rozkład stężenia CO w okresie pożaru były symulowane w czterech warunkach pracy. Wyniki pokazały, że czas potrzebny na zejście warstwy dymu do wysokości oddechu człowieka był dodatnio skorelowany z odległością między pozycją a źródłem ognia. W najbardziej niesprzyjających warunkach dym osiągnął wysokość oddechu człowieka w odległości 15,11s i 100 m od źródła ognia. Po wybuchu pożaru temperatura otoczenia na jezdni gwałtownie wzrosła, a najwyższa temperatura w obszarze przylegającym do źródła ognia osiągnęła 340 °C. Im dalej od źródła ognia, tym niższa temperatura, ale nadal była wyższa niż optymalna temperatura ludzkiego ciała ( 25 °C) do 200 m. Wyniki tego badania mogą stanowić podstawę do przygotowania planów awaryjnych pożaru dróg.
REFERENCJE (32)
1.
ADJISKI V., MIRAKOVSKI D., DESPODOV Z. et al., 2015, Simulation and optimization of evacua-tion routes in case of fire in underground mines, Journal of Sustainable Mining, 14(3), 133–143.
2.
BAKHTIYARI S., AKBARI L.T., ASHTIANI M.J., 2017, An investigation on fire hazard and smoke toxicity of epoxy FRP composites, International Journal of Disaster Resilience in the Built Envi-ronment, 8(3), 230–237.
3.
CHASKO L., CONTI R.S., LAZZARA C.P., 2005, Fire response preparedness for underground mines, National Institute for Occupational Safety and Health, 34(4), 196–208.
4.
CHRIST G., 2015, South African Mine Fire Heats Up Mine Safety Concerns, EHS Today, 12, 204–205.
5.
HANSEN R, INGASON H., 2013, Heat release rate measurements of burning mining vehicles in an underground mine, Fire Safety Journal, 61(11), 12–25.
6.
HANSEN R., 2012, Methodologies for calculating the overall heat release rate of a vehicle in an underground structure, Fifth International Symposium on Tunnel Safety and Security, 6(5), 4–12.
7.
HANSEN R., 2015, Study of heat release rates of mining vehicles in underground hard rock mines, School of Business Society and Engineering, 5(3), 101–106.
8.
HANSEN R., 2021, The passive fire protection of mining vehicles in underground hard rock mines, Mining, Metallurgy and Exploration, 38(1), 609–622.
9.
HANSEN R., MALMFLTENS, Brandkonsult., 2017, Fire behavior of mining vehicles in underground hard rock mines, International Journal of Mining Science and Technology, 27(4), 44–51.
10.
HIRAI T., 2011, Tunnel Ventilation Design and Build, Journal of the Japan Society of Mechanical Engineers, 114, 160–162.
11.
INGASON H., YING Z., 2010, Model scale tunnel fire tests with longitudinal ventilation, Fire Safety Journal, 45, 371–384.
12.
INGASON H., LÖNNERMARK A., 2011, Heat release rates in tunnel fires: a summary, Thomas Telford, 42(6), 61–69.
13.
INGASON H., YING Z.L., LNNERMARK A., 2015, Tunnel Fire Dynamics, New York.
14.
KANG N., QIN Y., HAN X. et al., 2019, Experimental study on heat release rate measurement in tunnel fires, Fire and Materials, 43(4), 381–392.
15.
KOCHEVSKY A.N., 2004, Possibilities of simulation of fluid flows using the modern CFD software tools, Physics.
16.
MORIN M.A., 2001, Underground hardrock mine design and planning: a system’s perspective, Dissertation Abstracts International, 52(4), 26–31.
17.
MOUILLEAU Y., CHAMPASSITH A., 2009, CFD simulations of atmospheric gas dispersion using the Fire Dynamics Simulator (FDS), Journal of Loss Prevention in the Process Industries, 22(3), 316–323.
18.
OKA Y., OKA H., 2020, Temperature and velocity distributions of a ceiling-jet along a flat-ceilinged tunnel with natural ventilation, Fire Safety Journal, 112(2), 102969.
19.
PERERA I.E., LITTON C.D., 2012, Impact of Air Velocity on the Detection of Fires in Conveyor Belt Haulageways, Fire Technology, 48(2), 405–418.
20.
RAN G.Y., ZHANG G., ZHANG H. et al., 2020, The Smoke Spread Rule under Different Longitudi-nal Wind Speed in the Case of Fire in a Blocked Tunnel, IOP Conference Series Earth and Envi-ronmental Science, 544, 012006.
21.
ROH J.S., HONG S.R., DONG H.K. et al., 2007, Critical velocity and burning rate in pool fire during longitudinal ventilation, Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 22(3), 262–271.
22.
SHEN T.S., HUANG Y.H., CHIEN S.W., 2008, Using fire dynamic simulation (FDS) to reconstruct an arson fire scene, Building and Environment, 43(6), 1036–1045.
23.
SINGH A.K., SINGH R.V.K., SINGH M.P. et al., 2007, Mine fire gas indices and their application to Indian underground coal mine fires, International Journal of Coal Geology, 69(3), 192–204.
24.
WANG H.Y., JOULAIN P., 2002, Numerical simulation of wind-aided turbulent fires in a ventilated model tunnel, Fire Safety Science – Proceedings of the Seventh International Symposium, 6(5), 161–172.
25.
WANG W.C., JIANG Y.H., ZHANG B. et al., 2013, Study on Heat Release Rate of Coal Combustion.
26.
in Tunnel, Safety in Coal Mines, 44(12), 40–42.
27.
WANG Y., JIANG J., ZHU D., 2009, Full-scale experiment research and theoretical study for fires.
28.
in tunnels with roof openings, Fire Safety Journal, 44(3), 339–348.
29.
YAN G., FENG D., 2013, Escape-Route Planning of Underground Coal Mine Based on Improved Ant Algorithm, Mathematical Problems in Engineering, 11(1), 61–61.
30.
YANG P., XUN T., WANG X., 2011, Experimental study and numerical simulation for a storehouse fire accident, Building and Environment, 46(7), 1445–1459.
31.
YING Z.L., BO L., INGASON H., 2011, Study of critical velocity and backlayering length in longitu-dinally ventilated tunnel fires, Fire Safety Journal, 45(6–8), 361–370.
32.
YING Z.L., INGASON H., 2012, The maximum ceiling gas temperature in a large tunnel fire, Fire Safety Journal, 48(1), 38–48.