PL EN
Open-pit overburden dump characterization using digital image processing technique
 
Więcej
Ukryj
1
Department of Mining Engineering, IIT (ISM), India
 
 
Autor do korespondencji
Radhakanta Koner   

Department of Mining Engineering, IIT (ISM), 826004, Dhanbad, India
 
 
Mining Science 2024;31:81-101
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
The safety of the open-pit overburden dump slope largely depends on the geomaterial size and shape. The shape of these geomaterials contributes to their shear resistance against sliding. The present investigation proposed a method to characterize the geomaterial using the digital image processing technique. The resources invested in this work are a simple digital camera and a computational toolbox. The system estimates the size distribution of geomaterial. The study also proposed a methodology for reconstructing the 3D geometry of the mine dump from the images. The advantage of the method is a low-cost, quick assessment of the dump geomaterial, and outcomes can easily be used in a numerical toolbox. The study was conducted in Barakar Valley Coalfields, West Bengal, India. The geomaterials above 4 mm sizes are considered in this work. The results matched the mechanical sieving output of the particle size distribution curve.
REFERENCJE (41)
1.
ABRÀMOFF M.D., MAGALHÃES P.J., and RAM S.J., 2004, Image processing with ImageJ, Biopho-tonics International, Vol. 11, No. 7, pp. 36–42.
 
2.
AKBULUT S., ARASAN S., and HASILOGLU A.S., 2011, Effect of particle size and shape on the grain-.
 
3.
-size distribution using image analysis, International Journal of Civil and Structural Engineering, Vol. 1, No. 4, pp. 968–985, doi: 10.6088/ijcser.00202010083.
 
4.
ATTENE M. and SPAGNUOLO M., 2000, Automatic surface reconstruction from point sets in space, Computer Graphics Forum, Vol. 19, No. 3, pp. 457–465.
 
5.
BAY H., TUYTELAARS T., and VAN GOOL L., 2006, SURF: Speeded Up Robust Features, ECCV 2006, Lecture Notes in Computer Science, Vol. 3951, pp. 404–417.
 
6.
BERGER M. et al., 2014, State of the Art in Surface Reconstruction from Point Clouds, Annual Conference of the European Association for Computer Graphics, Eurographics.
 
7.
CHAND K. and KONER R., 2024, Mine Active Internal Dump Susceptible Zone Identification using MMO Technique, Journal of Mines, Metals and Fuels, pp. 165–177, Apr., doi: 10.18311/jmmf/2024/35719.
 
8.
CIGNONI P., CALLIERI M., CORSINI M., DELLEPIANE M., GANOVELLI F., and RANZUGLIA G., 2008, MeshLab: an Open-Source Mesh Processing Tool, Eurographics Italian chapter conference, pp. 129–136.
 
9.
FERNLUND J.M.R., 2005a, Image analysis method for determining 3-D size distribution of coarse ag-gregates, Bulletin of Engineering Geology and the Environment, Vol. 64, No. 2, pp. 159–166, Jun., doi: 10.1007/s10064-004-0251-8.
 
10.
FERNLUND J.M.R., 2005b, Image analysis method for determining 3-D shape of coarse aggregate, Cem. Concr. Res., Vol. 35, No. 8, pp. 1629–1637, Aug., doi: 10.1016/j.cemconres.2004.11.017.
 
11.
FERNLUND J.M.R., 2005c, 3-D image analysis size and shape method applied to the evaluation of the Los Angeles test, Eng. Geol., Vol. 77, No. 1–2, pp. 57–67, Feb., doi: 10.1016/j.enggeo.2004.08.002.
 
12.
FISCHLER M.A. and BOLLES R.C., 1981, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM, Vol. 24, No. 6,.
 
13.
pp. 381–395.
 
14.
GEE G.W. and OR D., 2002, Particle-Size Analysis, [in:] Methods of soil analysis: Part 4. Physical meth-ods, Vol. 5, pp. 255–293.
 
15.
GHALIB A.M. and HRYCIW R.D., 1999, Soil particle size distribution by mosaic imaging and water-shed analysis, Journal of Computing in Civil Engineering, Vol. 13, No. 2, pp. 80–87.
 
16.
HUNT B.R., LIPSMAN R.L., and ROSENBERG J.M., 2001, A Guide to MATLAB, doi: 10.1017/.
 
17.
cbo9781139164801.
 
18.
JIE XU W., QI YUE Z., and LIN HU R., 2008, Study on the mesostructure and mesomechanical charac-teristics of the soil-rock mixture using digital image processing based finite element method, Interna-tional Journal of Rock Mechanics and Mining Sciences, Vol. 45, No. 5, pp. 749–762, doi: 10.1016/.
 
19.
j.ijrmms.2007.09.003.
 
20.
KARAKUS D., ONUR A.H., DELIORMANLI A.H., and KONAK G., 2010, Size and shape analysis of mineral particles using image processing technique, Journal of Ore Dressing, Vol. 12, No. 23.
 
21.
KAZHDAN M. and HOPPE H., 2013, Screened poisson surface reconstruction, ACM Trans. Graph., Vol. 32, No. 3, Jun., doi: 10.1145/2487228.2487237.
 
22.
KAZHDAN M., BOLITHO M., and HOPPE H., 2006, Poisson Surface Reconstruction, [in:] K. Polthier, A. Sheffer (Eds.), Eurographics Symposium on Geometry Processing.
 
23.
KONER R. and CHAKRAVARTY D., 2016, Characterisation of overburden dump materials: a case study from the Wardha valley coal field, Bulletin of Engineering Geology and the Environment, Vol. 75, No. 3, pp. 1311–1323, Aug., doi: 10.1007/s10064-015-0830-x.
 
24.
KONER R., 2021, Estimation of Optimum Geometric Configuration of Mine Dumps in Wardha Valley Coalfields in India: A Case Study, Journal of Mining and Environment, Vol. 12, No. 4, pp. 907–927, Sep., doi: 10.22044/jme.2021.10979.2074.
 
25.
KWAN A.K.H., MORA C.F., and CHAN H.C., 1999, Particle shape analysis of coarse aggregate using digital image processing, Cem. Concr. Res., Vol. 29, No. 9, pp. 1403–1410.
 
26.
LIRA C. and PINA P., 2007, Sedimentological analysis of sands, [in:] Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer-Verlag, pp. 388–396. doi: 10.1007/978-3-540-72849-8_49.
 
27.
LU F., ZHOU X., and HE Y.B., 1988, Image Segmentation Technique Used in Estimation of the Size Distribution of Rock Fragments in Mining, MVA, pp. 351–354.
 
28.
MAERZ N.H. and LUSHER M., 2001, Measurement of flat and elongation of coarse aggregate using digital image processing, [in:] 80th Annual Meeting, Transportation Research Board, Washington DC, pp. 2–14. [Online]. Available: https://www.researchgate.net/p....
 
29.
MAERZ N.H., 2004, Technical and Computational Aspects of the Measurement of Aggregate Shape by Digital Image Analysis, Journal of Computing in Civil Engineering, Vol. 18, No. 1, pp. 10–18, doi: 10.1061/ASCE0887-3801200418:110.
 
30.
MIR B.A. and ASHRAF S., 2019, Evaluation of load-settlement behaviour of square model footings resting on geogrid reinforced granular soils, [in:] Advanced Research on Shallow Foundations, pp. 103–126, doi: 10.1007/978-3-030-01923-5.
 
31.
MISHRA A., DAS S.K., and REDDY K.R., 2024, Potential Use of Coal Mine Overburden Waste Rock as Sustainable Geomaterial: Review of Properties and Research Challenges, J. Hazard Toxic Radioact. Waste, Vol. 28, No. 1, Jan., doi: 10.1061/jhtrbp.hzeng-1258.
 
32.
MORA C.F. and KWAN A.K.H., 2000, Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing, Cem. Concr. Res., Vol. 30, Issue 3, 351–358.
 
33.
MORA C.F., KWAN A.K.H., and CHAN H.C., 1998, Particle size distribution analysis of coarse aggre-gate using digital image processing, Cem. Concr. Res., Vol. 28, No. 6, pp. 921–932.
 
34.
NEUBECK A. and VAN GOOL L., 2006, Efficient Non-Maximum Suppression, ETH Zurich.
 
35.
RUBIN D.M., 2004, A Simple Autocorrelation Algorithm for Determining Grain Size from Digital Images of Sediment,” JOURNAL OF SEDIMENTARY RESEARCH, vol. 74, no. 1, pp. 160–165, [Online]. Available: http://pubs.geoscienceworld.or....
 
36.
SERESHKI F., HOSEINI S.M., and ATAEI M., 2016, Blast fragmentation analysis using image pro-cessing, International Journal of Mining and Geo-Engineering, Vol. 50, No. 2, pp. 211–218, doi: 10.22059/ijmge.2016.59831.
 
37.
TAYLOR M.A., 2002, Quantitative measures for shape and size of particles, Powder Technol., Vol. 124, No. 1–2, pp. 94–100. [Online]. Available: www.elsevier.com/locate/powtec.
 
38.
TRIGGS B., MCLAUCHLAN P., HARTLEY R., and FITZGIBBON A., 2000, Bundle Adjustment – A Modern Synthesis, Vision Algorithms: Theory and Practice: International Workshop on Vision Algo-rithms Corfu, Greece, pp. 298–372, doi: 10.1007/3-540-44480-7_21ï.
 
39.
TUTUMLUER E., PAN T., and CARPENTER S.H., 2005. Investigation of aggregate shape effects on hot mix performance using an image analysis approach, UILU-ENG. [Online]. Available: http://www.pooledfund.org.
 
40.
VANGLA P., ROY N., MENDU K., and LATHA G.M., 2014, Digital Image Analysis for the Determina-tion of Size and Shape Parameters of Sand Grains, [in:] Golden Jubilee Conference of the IGS Banga-lore Chapter, Geo Innovations, Bangalore India. [Online]. Available: https://www.researchgate.net/.
 
41.
publication/273261114.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top