PL EN
Preliminary studies of the physico-chemical properties of basalt rock flour from the Męcinka mine in Lower Silesia for agriculture
 
More details
Hide details
1
“Poltegor-Institute” Institute of Opencast Mining, Wrocław, Poland
 
 
Corresponding author
Mirosław Maliszewski   

“Poltegor-Institute” Institute of Opencast Mining, Wrocław, Poland
 
 
Mining Science 2021;28:175-187
 
KEYWORDS
TOPICS
ABSTRACT
During prospecting, exploration and processing of basalts, mining waste and fractions which are hard to dispose are produced. Environmental protection and economic reasons make it necessary to man-age as much of the extracted mineral as possible. There are various actions taken to use this raw mate-rial in many sectors of economy. Increasing the use of the natural soil remineralizer, produced of basalt rock flours, can reduce the accumulation of mining waste. The results of the researches on the physical and chemical properties of basalt rock flour from the Męcinka mine in Lower Silesia are described in this paper. The research was carried out to evaluate the soil remineralizer produced from rock material in agriculture. It turned out that the tested rock material contains significantly lower concentration of heavy metals than can be entered into the soil (lead, cadmium, arsenic and mercury). The rock material contains different microelements (Al, Si, S, Ti, Fe, Cu, Zn, Ba, Mn, Se, Mo), which are important components of cell molecules, necessary for proper growth and development of plants. The pH is alkaline, therefore a soil remineralizer produced from rock flour should be used mainly in acidic soils. The results of the granulometric tests of the rock flour grains showed that the rock material should be ground to a smaller fraction (i.e. 0.063 mm). It was found that adding basalt flour to soil improves respiration of soil microorganisms.
REFERENCES (44)
1.
AISLABIE J., DESLIPPE J.R., 2013, Soil microbes and their contribution to soil services. [In:].
 
2.
J.R. Dymond (Ed.), Ecosystem services in New Zealand – conditions and trends, Manaaki Whenua Press, Lincoln, New Zealand.
 
3.
ALI S.S., VIDHALE N.N., 2013, Bacterial siderophore and their application: a review, International Journal of Current Microbiology. Applied Science, Vol. 2, No. 12, 303–312.
 
4.
ANGULO J., SALGADO M.M.M, ORTEGA-BLU R., FINCHEIRA P., 2020, Combined effects of chemical fertilization and microbial inoculant on nutrient use efficiency and soil quality indicators, Sci. Agrop., Vol. 11, No. 3, http://dx.doi.org/10.17268/sci....
 
5.
BÅÅTH E., 1989, Effects of heavy metals in soil on microbial processes and populations (a review), Water, Air and Soil Pollution, Vol. 47, 335–379.
 
6.
BADURA J., PECSKAY Z., KOSZOWSKA E., WOLSKA A., ZUCHIEWICZ W., PRZYBYLSKI B., 2006, Nowe dane o wieku i petrologii kenozoicznych bazaltoidów dolnośląskich, Przegląd Geologiczny, Vol. 54, No. 2, 145–153.
 
7.
BEDNAREK R., SKIBA S., 2015, Gleboznawstwo. Rozdział 9, PWN, Warszawa (e-book).
 
8.
BLACHOWSKI J., BUCZYŃSKA A., 2020, Analysis of rock raw materials transport and its implications for regional development and planning. Case study of Lower Silesia (Poland), Sustainability, Vol. 12, No. 8, 3165.
 
9.
BUCHMAN N., 2000, Biotic and abiotic factors controlling soil respiration rates in Picea abies stands, Soil Biology and Biochemistry, Vol. 32, No. 11–12, 1625–1635.
 
10.
BUNEMANN E.K., SCHWEDKE G.D., VAN ZWIETEN L., 2006, Impact of agricultural inputs on soil organisms – a review, Australian Journal of Soil Research, Vol. 44, 379–406.
 
11.
CICHY B., SKULIMOWSKI A.M.J., 2010, Odpady nieorganiczne przemysłu chemicznego w Polsce, Przemysł Chemiczny, Vol. 89, No. 10, 1319–1323.
 
12.
CORSTANJE R., REDDY K.R., 2006, Microbial indicators of nutrient enrichment, Soil Science Society of America Journal, Vol. 70, 1652–1661.
 
13.
DORDAS C., 2008, Role of nutrients in controlling plant diseases in sustainable agriculture. A review, Agronomy for Sustainable Development, Vol. 28, No. 1, 33–46.
 
14.
ERISMAN J., BLEEKER A., HANSEN A., VERMEULEN A., 2008, Agricultural air quality in Europe and the future perspectives, Atmospheric Environment, Vol. 42, 3209–3217.
 
15.
FILIPEK T., SKOWROŃSKA M., 2013, Aktualnie dominujące przyczyny oraz skutki zakwaszenia gleb użytkowanych rolniczo w Polsce, Acta Agrophysica, Vol. 20, No. 2, 283–294.
 
16.
GALLAGHER P., WALSH T., 1943, The susceptibility of cereal varieties to manganese deficiency, Journal of Agriculture Science, Vol. 33, No. 4, 197–203.
 
17.
GREINERT A., HULISZ P., JANKOWSKI M., JONCZAK J., ŁABAZ B., ŁACHACZ A., MARZEC M., MENDYK Ł., MUSIAŁ P., MUSIELOK Ł., SMRECZEK B., SOWIŃSKA P., ŚWITONIAK M., UZAROWICZ Ł., WAROSZEWSKI J., 2019, Polish Soil Classification, 6th edition – principles, classification scheme and correlations, Soil Science Annual, Vol. 70, No. 2, 71–97.
 
18.
JERZMAŃSKI J., ŚLIWA Z., 1979, Bazalty. [In:] K. Dziedzic (Ed.), Surowce mineralne Dolnego Śląska, Ossolineum, 259–269.
 
19.
HANSON P.J., EDWARDS N.T., GARTEN C.T., ANDREWS J.A., 2000, Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, Vol. 48, 115–146.
 
20.
KABAŁA C., CHARZYŃSKI P., CHODOROWSKI J., DREWNIK M., GLINA B., GEINERT A., HULISZ P., JANKOWSKI M., JONCZAK J., ŁABAZ B., ŁACHACZ A., MARZEC M., MENDYK Ł., MUSIAŁ P., MUSIELOK Ł., SMRECZAK B., SOWIŃSKI P., ŚWITONIAK M., UZAROWICZ Ł., WAROSZEWSKI J., 2019, Soil Science Annual, Vol. 70, No. 2, 71–97.
 
21.
KELLAND M.E., WADE P.W., LEWIS A.L., TAYLOR L.L., SARKAR B., ANDREWS M.G., LOMAS M.R., COTTON T.E.A., KEMP S.J., JAMES R.H., PEARCE Ch.R., HODSON M.E., LEAKE J.R., BANWART S.A., BEERLING D.J., 2020, Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil, Global Change Biology, Vol. 26, 3658–3676.
 
22.
KEMP B., NICHOLSON P.T., 2000, Soil including mud-brick architecture. [In:] P.T. Nicholson, I. Shaw (Ed.), Ancient Egyptian Materials and Technology, Cambridge University Press, 81–91.
 
23.
KOCOŃ A., 2014, Nawożenie roślin strączkowych, Studia i Raporty IUNG-PIB, Vol. 37, No. 11, 127–137.
 
24.
KOZIEŁ M., GAŁĄZKA A., MARTYNIUK S., 2018, Wolnożyjące bakterie wiążące azot atmosferyczny z rodzaju Azotobacter – występowanie, liczebność i znaczenie, Studia i Raporty IUNG-PIB, Vol. 56, No. 10, 57–70.
 
25.
KUZYAKOV Y., 2006, Sources of CO2 efflux from soil and review of partitioning methods, Soil Biology and Biochemistry, Vol. 38, 425–448.
 
26.
MALISZEWSKI M., ŚLUSARCZYK G, BOROWICZ A, KORZENIOWSKA J., STANISŁAWSKA-.
 
27.
-GLUBIAK E., 2019, Badania jakości trudno zbywalnych frakcji surowców skalnych z kopalni Braszowice na potrzeby polepszaczy glebowych. Wyniki badań wstępnych, Górnictwo Odkrywkowe, Vol. 1, 31–36.
 
28.
MARCINKOWSKI T., 2010, Emisja gazowych związków azotu z rolnictwa, Woda–Środowisko–Obszary Wiejskie, Vol. 10, No. 3, 75–189.
 
29.
MILLER A.J., WHALLEY W.R., MOONEY S.J., STURROCK C.J., 2014, Quantifying the impact of microbes on soil structural development and behaviour in wet soils. Soil Biology and Biochemistry, Vol. 74, 138–147.
 
30.
NEIN D., 2019, The role of soil pH in plant nutrition and soil remediation, Applied Environmental and Soil Science, Article ID 5794869.
 
31.
NDEPETE C.P., SERT S., 2016, Use of basalt fibers for soil improvement, Acta Physica Polonica A, Vol. 130, No. 1, 355–356.
 
32.
PIWOWAR A., 2013, Zakres problematyki nawożenia w zrównoważonym rozwoju rolnictwa, Eko-nomia.
 
33.
i Środowisko, Vol. 1, No. 44, 143–155.
 
34.
PIWOWAR A., DZIKUĆ M., 2020, Energochłonność i emisyjność przemysłu nawozowego, Przemysł Chemiczny, Vol. 99, No. 4, 564–568.
 
35.
RAHMAN S.F.S.A., SINGHA E., PIETESEB C.M.J., SCHANKA P.M., 2018, Emerging microbial biocontrol strategies for plant pathogens, Plant Science, Vol. 267, 102–111.
 
36.
REMBIŚ M., 2011, Mineralno-teksturalna zmienność wybranych skał bazaltowych Dolnego Śląska i jej rola w kształtowaniu fizyczno-mechanicznych właściwości produkowanych kruszyw, Gospodarka Surowcami Mineralnymi, Vol. 27, No. (3), 32–48.
 
37.
RUTKOWSKA A., 2018, Ocena przestrzennego zróżnicowania odczynu gleb w Polsce w latach 2008.
 
38.
–2016, Studia i Raporty IUNG-PIB, Vol. 56, No. 10, 9–20.
 
39.
RYAN M., BEVERLY E., LAW E., 2005, Interpreting, measuring, and modeling soil respiration, Biogeochemistry, Vol. 73, 3–27.
 
40.
SINGH B., NATESAN S., SINGH B., USHA K., 2005, Improving zinc efficiency of cereals under zinc deficiency, Current Science, Vol. 88, No. 1, 36–44.
 
41.
URBAŃSKI K., RÓŻAŃSKI P., KOZDRÓJ W., 2009, Szczegółowa mapa geologiczna Polski 1:50000, PIG i PIB. Ministerstwo Środowiska, 2017.
 
42.
WAINWRIGHT M.A., 1978, A review of the effects of pesticides on microbial activity in soils, European Journal of Soil Science, Vol. 29, No. 3, 287–298.
 
43.
WELCH R.M., SHUMAN L., 1995, Micronutrient nutrition of plants, Critical Review of Plant Science, Vol. 14, No. 1, 49–82.
 
44.
ZAGOŻDŻON P.P., 2008, Mączki bazaltowe w zastosowaniach rolniczych i pokrewnych, Prace Nau-kowe Instytutu Górnictwa Politechniki Wrocławskiej, Vol. 123, No. 34, 133–142.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top