PL EN
STUDY OF THE MECHANICAL BEHAVIOR AND DURABILITY OF MORTARS BASED ON ACITVATED SAND
 
Więcej
Ukryj
1
Department of Civil Engineering, Faculty of Science and Technology, Elbachir El Ibrahimi University, Bordj Bou Arréridj University, 34030, Algeria
 
2
Department of civil engineering Faculty of Technology , University Med Boudiaf of M’sila , Algeria (28.000)
 
3
Department of Material Science, Faculty of Science and Technology, Elbachir El Ibrahimi University, Bordj Bou Arréridj University, 34 030, Algeria
 
 
Autor do korespondencji
Noui Ammar   

Department of civil engineering, Faculty of Science and Technology, Elbachir El Ibrahimi University, Bordj Bou Arréridj University, 34030, Algeria
 
 
Mining Science 2020;27:47-59
 
SŁOWA KLUCZOWE
DZIEDZINY
STRESZCZENIE
Sand occupies a great proportion of the cementitious matrix product and in particular mortars. Hence, the study of fine aggregates used for concrete and mortar in general, deserves to be objects of research including sand which has always been considered as inert material, the role of which is related exclusively to its physical appearance in the development of mechanical responses. The main objective of the present experimental research work is to study the effect of the type and rate of substitution of mineral additions pozzolan and blast furnace slag of a natural sand fine fraction (sieve diameter less than 0.16 mm) on the mechanical responses and durability. The study here in focused on these particular characteristics of formulated mortars to be assessed to evaluate mortars performances. Mixtures were prepared (mixed sands) by varying the dosage of the two factors related to additions (Slag and Pozzolan) introduced separately from 0% to 10% at 2, 5% step increment. The substitution of the finest fraction of the particle size composition of the natural sand as well as the ordinary Portland cement (CEM I / 42.5) were used for studied mortars. The results obtained show a significant improvement of the mechanical properties for the mortars based on the new activated sand. With regard to durability tests of HCl and H2SO4 acids chemical attacks, the substitution of the quartz by active mineral additions in the sand-size skeleton allows a reduction in resistance loss of up to 50% and a mass gain up to 75%.
 
REFERENCJE (28)
1.
ALONSO S., PALOMO A., 2001, Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio, Materials Letters (Roč. 47). http://doi.org/10.1016/S0167-5....
 
2.
BADOGIANNIS E., 2002, The effect of metakaolin on concrete properties. Proceedings of International Congress: Challenges of Concrete Construction, Dundee, 81–89.
 
3.
BELAGRAA L., BOUZID A., 2016, performance study of low environmental impact mortars based on mineral additions and cement resistant to sulfate (crs), Mining Science, 23, 65–76.
 
4.
BURCIAGA-DIAZ O., DÍAZ-GUILLÉN M.R., FUENTES A.F., ESCALANTE-GARCIA J.I., 2013, Mortars of alkali-activated blast furnace slag with high aggregate: binder ratios, Construction and Building Materials, 44, 607–614, http://doi.org/10.1016/j.conbu....
 
5.
CASSAGNABÈR E.F., LACHEMI M., MOURET M., ESCADEILLAS G., 2011, Caractérisation per-formantielle d’un liant ternaire à base de ciment, laitier et métakaolin, Can. J. Civ. Eng., 38, 8, 837–848.
 
6.
CHEN C., GONG W., LUTZE W., PEGG I.L., ZHAI J., 2010, Kinetics of fly ash leaching in strongly alkaline solutions, Journal of Materials Science, 46, 590–597. http://doi.org/10.1007/s10853-....
 
7.
CRIADO M., FERNÁNDEZ-JIMÉNEZ A., PALOMO A., 2010, Alkali activation of fly ash. Part III: Effect of curing conditions on reaction and its graphical description, Fuel, 89, 3185–3192. http://.
 
8.
doi.org/10.1016/j.fuel.2010.03.051.
 
9.
DEBOUCHA W., OUDJIT M.N., BOUZID A., BELAGRAA L., 2015, Effect of Incorporating Blast Furnace Slag and Natural Pozzolan on the Compressive Strength and Capillary Water Absorption of Concrete, 7th Scientific-Technical Conference on Material Problems in Civil Engineering MATBUD ’2015, Cracow, 22–24 June 2015, Cracow, Poland.
 
10.
EN 12390-3 (2009), Compressive strength at 28 days.
 
11.
EN 12390-6 (2003), Splitting tensile strength at 28 days.
 
12.
EN 196-1 (2003), Determination of strength, Method of testing cement.
 
13.
FERNANDEZ-JIMENEZ A., PALOMO J.G., PUERTAS F., 1999, Alkali-activated slag mortars Me-chanical strength behaviour. Cement and Concrete Research, 29, 1313–1321. http://doi.org/10.1016/.
 
14.
S00088846(99)00154-4.
 
15.
KERBOUCHE A., MOULI M., LAOUFI L., SENHADJI Y., BENOSMANE S., 2009, Influence des ajouts minéraux sur les résistances mécaniques des mortiers. SBEIDCO – 1st International Conference on sustainable Built Environment Infrastructures, in: Developing Countries ENSET Oran (Algeria), 431–438.
 
16.
KHATIB J.M., 2004, Absorption characteristics of metakaolin concrete. Cement and Concrete Research, 34, 19–29.
 
17.
LIZCANO M., KIM H.S., BASU S., RADOVIC M., 2011, Mechanical properties of sodium and potas-sium activated metakaolin-based geopolymers. Journal of Materials Science, 47, 2607–2616. http://.
 
18.
doi.org/10.1007/s10853-011-6085-4.
 
19.
NOUI A., 2018, Effet de l’activation du ciment avec ajout minéral par la chaux fine sur le comportement mécanique du mortier, thèse de Doctorat, département de Génie Civil, Université de M’sila, Algérie.
 
20.
NOUI A., ZEGHICHI L., 2017, The effect of limestone fineness on ternary cement fresh-state and early-.
 
21.
-age properties, Mining Science, 24, 195–208.
 
22.
POUGUININSELI M.L., 2017, Étude de l’influence de la qualité du sable sur les propriétés physico-mécaniques d’un béton courant: Mémoire pour l’obtention du master en ingénierie de l’eau et de l’environnement option: genie civil 2017, ACIT Géotechnique Burkina Faso.
 
23.
PROVIS J.L., VAN DEVENTER J.S.J., 2009, Geopolymers – Structure, processing, properties and industrial applications, Woodhed Publishing Limited and CRC Press LLC.
 
24.
PROVIS J.L., VAN DEVENTER J.S.J., 2014, Alkali Activated Materials State-of-the-Art Report, RILEM TC 224-AAM. RILEM State-of-the-Art Reports. New York, London Library.
 
25.
PROVIS J.L., PALOMO A., SHI C., 2015, Cement and Concrete Research Advances in understanding alkali-activated materials, Cement and Concrete Research, 78, 110–125.
 
26.
SAILLIO M., 2012, Interactions physiques et chimiques ions-matrice dans les bétons sains et carbonatés. Influence sur le transport ionique, Université Paris Est Marne la Vallée.
 
27.
SEDIRA N., CASTRO-GOMES J., KASTIUKAS G., ZHOU X., VARGAS A., 2017, A review on min-eral waste for chemical-activated binders: mineralogical and chemical characteristics, Mining Sci-ence, 24, 29–58.
 
28.
TÜRKER H.T., BALÇIKANLI M., DURMUS I.H., ÖZBAYA E., MUSTAFA E., 2016, Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level, Construction and Building Materials, 104, 169–180, http://doi.org/10.1016/j.conbu....
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top