Slope stability analysis in open pit mines of Jebel Gustar Career, Ne Algieria- a multi-steps approach
More details
Hide details
1
Department of Mines, Faculty of Earth Sciences, Badji Mokhtar University, Annaba, Algeria
2
Earth Sciences Department, Ferhat Abbas University, Setif 1, Algeria
3
Mineral Processing and Environmental Laboratory, Department of Mines, Faculty of Earth Sciences,
Badji Mokhtar University, Annaba, Algeria.
Corresponding author
Farid Zahri
Setif 1 University, Department of Earth Sciences, Institut of Architecture and Earth Sciences, Setif University, 19000 Setif, Algeria
Mining Science 2016;23:137-146
KEYWORDS
TOPICS
ABSTRACT
Several types of instabilities can menace the personnel and equipment in the open cast mines. Their kinematicis dependent commonly on the nature, the structure, the fracturing and the strength of the rock mass. A scientific assessment vis-a-vis their equilibrium is suggested. For this task a considerable amount of field work must already carrying out to supply the necessary data ie: geometric, mecanic and geologic parameters. The main purpose of this research is identifying different modes of slope failures that may develop on the career “ENOF” of Jebel Gustar, by a multi-step analysis. For this task, i) a structural analysis; ii) an estimation of the rock mass and discontinuity mechanical properties, iii) a rating of the rock mass quality, iv) and a numerical simulation of the stability are procedurally used. The results matched well with the field observations. They proved the poor stability of the career, showing a typical example of a bad slope-design. The application of such approaches can help stabilizing the mine and ensure the safety and a sustainable production.
REFERENCES (20)
1.
BARTON N., 1978. Suggested methods for the quantitative description of discontinuities in rock mass-es. ISRM, International Journal of Rock Mechanics and Mining Sciences Geomechanics, 15(6).
2.
BARTON N., LIEN R., LUNDE J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock mechanics, 6(4), 189–236.
3.
BIENIAWSKI Z.T., 1976. Rock mass classification of jointed rock masses. Exploration for Rock Engi-neering. Johannesburg: Balkema, 97–106.
4.
BRADY B., BROWN E., 1993. Rock mechanics for underground mining, Chapman & Hall. London, UK.
5.
DEZAYES C., 2007. Réseau de fractures dans le Dogger de Bourgogne. Données pour le calcul de perméabilité équivalente. BRGM/RP-FR-54955.
6.
EBERHARDT E., STEAD D., COGGAN J., 2004. Numerical analysis of initiation and progressive failure in natural rock slopes. International Journal of Rock Mechanics and Mining Sciences, 41(1), 69-87.
7.
GUADRI L., HADJI R., ZAHRI F., RAЇS K., 2015. The quarries edges stability in opencast mines: A case study of the Jebel Onk phosphate mine, NE Algeria. Arab J Geosci 8:8987–8997.
8.
GUIRAUD R., BOSWORTH W., THIERRY J., DELPLANQUE A., 2005. Phanerozoic geological evolution of Northern and Central Africa: an overview. Journal of African Earth Sciences, 43(1), 83-143.
9.
HADJI R., CHOUABI A., GADRI L., RAÏS K., HAMED Y., BOUMAZBEUR A., 2016. Application of linear indexing model and GIS techniques for the slope movement susceptibility modeling in Bousselam upstream basin, Northeast Algeria, Arab J Geosci 9:192.
10.
HADJIGEORGIOU J., LESSARD J.F., FLAMENT F., 1995. Characterizing in-situ block size distribu-tion using a stereological model. Canadian tunnelling, 111-121.
11.
HOEK E., BROWN E.T., 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34(8), 1165-1186.
12.
KARAMAN K., ERCIKDI B., KESIMAL A., 2013. The assessment of slope stability and rock ex-cavatability in a limestone quarry. Earth Sciences Research Journal, 17(2), 169-181.
13.
KULATILAKE P.H.S.W., HUDAVERDI T., Wu Q., 2012. New prediction models for mean particle size in rock blast fragmentation. Geotechnical and Geological Engineering, 30(3), 665-684.
14.
MARTIN G., 2000. Conception des excavations minières souterraines à l’aide de la modélisation de réseaux de discontinuités. Thèse présentée à l’Université Laval, Québec, Canada. 163p.
15.
OZTURK C.A., 2013. Support design of underground openings in an asphaltite mine. Tunnelling and Underground Space Technology, 38, 288-305.
16.
PRIEST S.D. 1993. Discontinuity analysis for rock engineering, Chapman & Hall. New York.
17.
ROMANA M., 1985, September. New adjustment ratings for application of Bieniawski classification to slopes. In: International symposium on the role of rock mechanics, Zacatecas (pp. 49-53).
18.
ROMANA M., 1993. A geomechanical classification for slopes: slope mass rating. Comprehensive rock engineering, 3(1), 575-599.
19.
SERAFIM J.L., PEREIRA J.P., 1983. Considerations of the geomechanics classification of Bieniawski. In international symp engineering geology and underground construction (Vol. 1, pp. 1133-1142).
20.
TRUNK U. HÖNISCH K., 1989. Cited at rock mechanics design in mining and tunneling, Bieniawski, p 183.