PL EN
The challenge of reducing diesel consumption and greenhouse gas emissions: A perspective on the use of hydrogen in mining trucks
 
More details
Hide details
1
Federal University of Ouro Preto
 
 
Corresponding author
Robson Lage Figueiredo   

Federal University of Ouro Preto, Brazil
 
 
Mining Science 2024;31:7-20
 
KEYWORDS
TOPICS
ABSTRACT
In mining, the traditional system of operation relies on equipment that consumes large amounts of energy. In mine operations, trucks are widely used due to their flexibility, loading capacity, and adaptability to various terrain conditions. However, they have high diesel oil consumption and high emission rates of smoke, particulate matter, and mainly carbon gas from diesel engines. This article offers a comprehensive view on the effect of hydrogen added to the diesel engine in the search for renewable energy alternatives that are in tune with the reduction of the environmental impact arising from the use of petroleum-derived fuels. The article presents an overview about the challenges in reducing the diesel fuel consumption of trucks em-ployed in mining. It approaches the effect of controlled hydrogen addition on diesel engine performance, consumption reduction, and greenhouse gas emissions. Followed by a discussion of the main technologies used to manufacture hydrogen and their production costs. The results of the studies show that hydrogen is a promising alternative for reducing operational, energy, and emissions costs, mainly carbon dioxide (CO2) and carbon monoxide (CO), but it faces barriers in production, storage, and supply costs. We highlight the “green hydrogen”, carbon-free, which contributes to the decarbonization process in mines, as open pit or underground ones.
REFERENCES (66)
1.
AJANOVIC A., SAYER M., and HAAS R., 2022, The Economics and the Environmental Benignity of Different Colors of Hydrogen, International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2022.02.094.
 
2.
ALLY J., PRYOR T., and PIGNERI A., 2015, The Role of Hydrogen in Australia’s Transport Energy Mix, International Journal of Hydrogen Energy, 40 (13), 4426–4441, DOI: 10.1016/j.ijhydene.2015.02.022.
 
3.
AN H., Yang W.M., MAGHBOULI A., LI J., CHOU S.K., and CHUA K.J., 2013, A Numerical Study on a Hydrogen Assisted Diesel Engine, International Journal of Hydrogen Energy, 38 (6), 2919–2928, DOI: 10.1016/j.ijhydene.2012.12.062.
 
4.
ANM, 2022, Brazilian Mineral Yearbook: Main Metallic Substances, https://Www.Gov.Br/Anm/Pt-Br/.
 
5.
Centrais-de-Conteudo/Publicacoes/Serie-Estatisticas-e-Economia-Mineral/Anuario-Mineral/Anuario-.
 
6.
Mineral-Brasileiro/Amb-2021-Ano-Base-2020.Pdf. (Accessed 30 June 2022).
 
7.
Anon, 2018, A Study on the Effects of Combined Diesel-Hydrogen Combustion on Diesel Engines Using Experimental and Simulation Techniques.
 
8.
BAJANY D.M., ZHANG L., and XIA X., 2019, An Optimization Approach for Shovel Allocation to Minimize Fuel Consumption in Open-Pit Mines: Case of Heterogeneous Fleet of Shovels, [in:] IFAC-PapersOnLine, Vol. 52, Elsevier B.V., pp. 207–212.
 
9.
BAKAR R.A., KADIRGAMA WIDUDO K., RAMASAMY D., TALAL YUSAF, KAMARULZAMAN M.K., SIVARAOS NAVID ASLFATTAHI, SAMYLINGAM L., and ALWAYZY SADAM H., 2022,.
 
10.
Experimental Analysis on the Performance, Combustion/Emission Characteristics of a DI Diesel Engine Using Hydrogen in Dual Fuel Mode, International Journal of Hydrogen Energy, DOI: 10.1016/.
 
11.
j.ijhydene.2022.04.129.
 
12.
BELTRAMI D., IORA P., TRIBIOLI L., and UBERTI S., 2021, Electrification of Compact Off-Highway Vehicles – Overview of the Current State of the Art and Trends, Energies, 14 (17), 1–29, DOI: 10.3390/en14175565.
 
13.
BENBELLIL MESSAOUD ABDELALLI, MOHAND SAID LOUNICI, KHALED LOUBAR, and MOHAND TAZEROUT, 2022, Investigation of Natural Gas Enrichment with High Hydrogen Participation in Dual Fuel Diesel Engine, Energy, 243, DOI: 10.1016/j.energy.2021.122746.
 
14.
CALVO G., and VALERO A., 2022, Strategic Mineral Resources: Availability and Future Estima-tions for the Renewable Energy Sector, Environmental Development, DOI: 10.1016/j.envdev.2021.100640.
 
15.
CÂMARA R., CÂMARA G., ANDRADE NETO M., MILOSEVIC T., CÉLIO ANDRADE J., and ROCHA P., 2019, Reserve Assessment and Certification of Brazil’s Oil and Mineral Sectors and Energy Storage: New Trends, Analysis, and Regulatory Proposals, Resources Policy, 62 (August 2018), 347–356, DOI: 10.1016/j.resourpol.2019.04.003.
 
16.
CARVALHO Jr. J.A., DE CASTRO A., BRASIL G.H., DE SOUZA Jr. P.A., and MENDIBURU A.Z., 2022, CO2 Emission Factors and Carbon Losses for Off-Road Mining Trucks, Energies, 15 (7), 2659.
 
17.
CATERPILLAR, 2022, Autonomous trucks operating worldwide with cat® command for hauling, https://.
 
18.
www.caterpillar.com/en/news/caterpillarNews/2022/500-autonomous-trucks.html [Accessed: 04 March 2024].
 
19.
COLE M.J., 2023, ESG risks to global platinum supply: A case study of Mogalakwena Mine, South Africa, Resources Policy, 85, 104054.
 
20.
DIMITRIOU P., Tsujimura T., and SUZUKI Y., 2019, Low-Load Hydrogen-Diesel Dual-Fuel Engine Operation – A Combustion Efficiency Improvement Approach, International Journal of Hydrogen Energy, 44 (31), 17048–17060, DOI: 10.1016/j.ijhydene.2019.04.203.
 
21.
DINDARLOO S.R. and SIAMI-IRDEMOOSA E., 2016, Determinants of Fuel Consumption in Mining Trucks, Energy, 112, 232–240, DOI: 10.1016/j.energy.2016.06.085.
 
22.
DUARTE SOUZA ALVARENGA SANTOS N., RODRIGUES FILHO F.A., TEIXEIRA MALAQUIAS A.C., and COELHO BAÊTA J.G., 2020, Study of the Water Injection Control Parameters on Combustion Performance of a Spark-Ignition Engine, Energy, 212.
 
23.
DI ILIO G., DI GIORGIO P., TRIBIOLI L., BELLA G., and JANNELLI E., 2021, Preliminary Design of a Fuel Cell/Battery Hybrid Powertrain for a Heavy-Duty Yard Truck for Port Logistics, Energy Conversion and Management, Vol. 243, DOI: 10.1016/j.enconman.2021.114423.
 
24.
FAN LIXIN, ZHENGKAI TU, and SIEW HWA CHAN, 2021, Recent Development of Hydrogen and Fuel Cell Technologies: A Review, Energy Reports, 7, 8421–8446.
 
25.
FREIRE G., RAMIREZ G., GÓMEZ R., SKRZYPKOWSKI K., and ZAGÓRSKI K., 2023, Electro-Mechanical Modeling and Evaluation of Electric Load Haul Dump Based on Field Measure-ments, Energies, 16, No. 11, 4399, DOI: 10.3390/en16114399.
 
26.
FÚNEZ GUERRA C., REYES-BOZO L., VYHMEISTER E., JAÉN CAPARRÓS M., SALAZAR J.L., GODOY-FAÚNDEZ A., CLEMENTE-JUL C., and VERASTEGUI-RAYO D., 2020, Viability Analysis of Underground Mining Machinery Using Green Hydrogen as a Fuel, International Journal of Hydrogen Energy, 45 (8), 5112–5121, DOI: 10.1016/j.ijhydene.2019.07.250.
 
27.
GHOLAMI ABOOZAR, SEYED ALI JAZAYERI, and QADIR ESMAILI, 2022, A Detail Perfor-mance and CO2 Emission Analysis of a Very Large Crude Carrier Propulsion System with the Main Engine Running on Dual Fuel Mode Using Hydrogen/Diesel versus Natural Gas/Diesel and Conventional Diesel Engines, Process Safety and Environmental Protection, 163 (May), 621–635, DOI: 10.1016/.
 
28.
j.psep.2022.05.069.
 
29.
GIULIANO G., DESSOUKY M., DEXTER S., FANG J., HU S., and Miller M., 2021, Heavy-Duty Trucks: The Challenge of Getting to Zero, Transportation Research Part D: Transport and Envi-ronment, 93, DOI: 10.1016/j.trd.2021.102742.
 
30.
GOLBASI O. and KINA E., 2022, Haul Truck Fuel Consumption Modeling under Random Operating Conditions: A Case Study, Transportation Research Part D: Transport and Environment, 102, DOI: 10.1016/j.trd.2021.103135.
 
31.
GUNAWAN TUBAGUS ARYANDI, and MONAGHAN R.F.D., 2022, Techno-Econo-Environmental Comparisons of Zero- and Low-Emission Heavy-Duty Trucks, Applied Energy, 308, DOI: 10.1016/.
 
32.
j.apenergy.2021.118327.
 
33.
HERMESMANN M., and MÜLLER T.E.. 2022, Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems, Progress in Energy and Combus-tion Science, Vol. 90 (August 2021),100996, DOI: 10.1016/j.pecs.2022.100996.
 
34.
HUO D., SARI Y.A., and ZHANG Q., 2024, Smart dispatching for low-carbon mining fleet: A deep reinforcement learning approach, Journal of Cleaner Production, Vol. 35, p. 140459, DOI: 10.1016/.
 
35.
j.jclepro.2023.140459.
 
36.
JAMROZIK A., GRAB-ROGALIŃSKI K., and TUTAK W., 2020, Hydrogen Effects on Combustion Stability, Performance and Emission of Diesel Engine, International Journal of Hydrogen Energy,.
 
37.
45 (38), 19936–19947, DOI: 10.1016/j.ijhydene.2020.05.049.
 
38.
KENANOĞLU R., BALTACIOĞLU M.K., DEMIR M.H., and ÖZDEMIR M.E., 2020, Performance and Emission Analysis of HHO Enriched Dual-Fuelled Diesel Engine with Artificial Neural Net-work Prediction Approaches, International Journal of Hydrogen Energy, 45 (49), 26357–26369, DOI: 10.1016/.
 
39.
j.ijhydene.2020.02.108.
 
40.
KRISHNASAMY A., GUPTA S.K., and REITZ R.D., 2021, Prospective Fuels for Diesel Low Tem-perature Combustion Engine Applications: A Critical Review, International Journal of Engine Re-search,.
 
41.
22 (7), 2071–2106.
 
42.
KUMAR A., LATA D.B., 2023, Investigation on the performance and emissions of tri-ethylene glycol mono methyl ether with hydrogen as a secondary fuel in dual fuel diesel engine, International Journal of Hydrogen Energy, Vol. 48, No. 26, pp. 9895–9910.
 
43.
LUMBERS B., BARLEY J., and PLATTE F., 2022, Low-Emission Hydrogen Production via the Thermo-.
 
44.
-Catalytic Decomposition of Methane for the Decarbonization of Iron Ore Mines in Western Aus-tralia, International Journal of Hydrogen Energy, 47 (37), 16347–16361, DOI: 10.1016/j.ijhydene.2022.03.124.
 
45.
MÜLLER-CASSERES E., CARVALHO F, NOGUEIRA T., FONTE C., IMPÉRIO M., POGGIO M., HUANG KEN WEI, PORTUGAL-PEREIRA J., ROCHEDO P.R.R., SZKLO A., and SCHAEFFER R., 2021, Production of Alternative Marine Fuels in Brazil: An Integrated Assessment Perspective, Energy, Vol. 219, DOI: 10.1016/j.energy.2020.119444.
 
46.
ONI A.O., ANAYA K., GIWA T., DI LULLO G., and KUMAR A., 2022, Comparative Assessment of Blue Hydrogen from Steam Methane Reforming, Autothermal Reforming, and Natural Gas De-composition Technologies for Natural Gas-Producing Regions, Energy Conversion and Manage-ment, 254, 115245, DOI: 10.1016/j.enconman.2022.115245.
 
47.
QAYYUM M.A., DICKSON R., ALI SHAH S.F., NIAZ H., KHAN A., JAY LIU J., and LEE M., 2021, Availability, Versatility, and Viability of Feedstocks for Hydrogen Production: Product Space Perspective, Renewable and Sustainable Energy Reviews, 145 (March), 110843, DOI: 10.1016/.
 
48.
j.rser.2021.110843.
 
49.
REITZ R.D., H. PAYRI O.R., FANSLER T., KOKJOHN S., MORIYOSHI Y., AGARWAL A.K., ARCOUMANIS D., ASSANIS D., BAE C., BOULOUCHOS K., CANAKCI M., CURRAN S., DENBRATT I., GAVAISES M., GUENTHNER M., HASSE C., HUANG Z., ISHIYAMA T., JOHANSSON B., JOHNSON T.V., KALGHATGI G., KOIKE M., KONG S.C., LEIPERTZ A., MILES P., NOVELLA R., ONORATI A., RICHTER M., SHUAI S., SIEBERS D., SU W., TRUJILLO M., UCHIDA N., VAGLIECO B.M., WAGNER R.M., and ZHAO H., 2020, IJER Edi-torial: The Future of the Internal Combustion Engine, International Journal of Engine Research, 21 (1), 3–10.
 
50.
REYES-VALENZUELA M., SÁNCHEZ-SQUELLA A., BARRAZA R., OSSES M., and VALDIVIA-.
 
51.
-LEFORT P., 2022, Economic Evaluation of Fuel Cell-Powered OFF-ROAD Machinery Using Stochastic Analysis, International Journal of Hydrogen Energy, 47 (5), 2771–2782, DOI: 10.1016/.
 
52.
j.ijhydene.2021.10.247.
 
53.
RUNGE I.C., 1998, Mining economics and strategy, SME – Society for Mining Metallurgy and Ex-ploration, ISBN: 0873351657.
 
54.
SINIGAGLIA T., LEWISKI F., SANTOS MARTINS M.E., and MAIRESSE SILUK J.C., 2017, Pro-duction, Storage, Fuel Stations of Hydrogen and Its Utilization in Automotive Applications-a Re-view, International Journal of Hydrogen Energy, 42 (39), 24597–24611.
 
55.
SOOFASTAEI A., AMINOSSADATI S., KNIGHTS P., KIZIL M., 2016, Comprehensive investigation of loading variance influence on fuel consumption and gas emissions in mine haulage operation, International Journal of Mining Science and Technology, Vol. 26, No. 6, pp. 995–1001.
 
56.
SUBRAMANIAN B. and THANGAVEL V., 2020, Experimental Investigations on Performance, Emission and Combustion Characteristics of Diesel-Hydrogen and Diesel-HHO Gas in a Dual Fuel CI Engine, International Journal of Hydrogen Energy, 45 (46), 25479–25492, DOI: 10.1016/j.ijhydene.2020.06.280.
 
57.
SMSEQUIPMENT, 2022, AHS technology operates globally, https://www.smsequipment.com/e....
 
58.
advanced-technologies/smart-mining/autonomous-haulage-systems/ [Accessed: 04 March 2024].
 
59.
SYMONENKO V.I., HADDAD J.S., CHERNIAIEV O.V., RASTSVIETAIEV V.O., and AL-.
 
60.
-RAWASHDEH M.O., 2019, Substantiating Systems of Open-Pit Mining Equipment in the Con-text of Specific Cost, Journal of The Institution of Engineers (India): Series D, 100 (2), 301–305, DOI: 10.1007/s40033-019-00185-2.
 
61.
TAGHAVIFAR H., NEMATI A., SALVADOR F.J., and DE LA MORENA J., 2021, 1D Energy, and Performance Assessment of Turbocharged Diesel/Hydrogen RCCI Engine at Different Levels of Diesel, Hydrogen, Compressor Pressure Ratio, and Combustion Duration, International Journal of Hydrogen Energy, 46 (42), 22180–22194, DOI: 10.1016/j.ijhydene.2021.04.035.
 
62.
VILAÇA A.S.I., SIMÃO L., MONTEDO O.R.K., NOVAES DE OLIVEIRA A.P., and RAUPP-PEREIRA F., 2022, Waste Valorization of Iron Ore Tailings in Brazil: Assessment Metrics from a Circular Economy Perspective, Resources Policy, Vol. 75 (December 2021), 0–10, DOI: 10.1016/j.resourpol.2021.102477.
 
63.
WANG Q., ZHANG R., Lv S., and WANG Y., 2021, Open-Pit Mine Truck Fuel Consumption Pattern and Application Based on Multi-Dimensional Features and XGBoost, Sustainable Energy Tech-nologies and Assessments, Vol. 43 (July 2020), 100977, DOI: 10.1016/j.seta.2020.100977.
 
64.
WANG X., DAI Q., BIAN Y., XIE G., XU B., YANG Z., 2023, Real-time truck dispatching in open-pit mines, International Journal of Mining, Reclamation and Environment, Vol. 37, pp. 1–20, DOI: 10.1080/17480930.2023.2201120.
 
65.
YELLISHETTY M., WERNER T.T., and WENG Z., 2021, Iron Ore in Australia and the World: Re-sources, Production, Sustainability, and Future Prospects, [in:] Iron Ore: Mineralogy, Processing and Environmental Sustainability, ed. by Liming Lu, Woodhead Publishing: Elsevier, pp. 711–750.
 
66.
ZHANG L., SHAN W., ZHOU B., and YU B., 2023, A dynamic dispatching problem for autonomous mine trucks in open-pit mines considering endogenous congestion, Transportation Research Part C: Emerging Technologies, Vol. 150, p. 104080, DOI: 10.1016/j.trc.2023.104080.
 
eISSN:2353-5423
ISSN:2300-9586
Journals System - logo
Scroll to top