Underground testing of load bearing capacity of rock bolting as part of the verification of its proper selection.
More details
Hide details
1
KGHM Polska MIedź S.A. O/ZG Lubin
2
Politechnika Wrocławska
Wydział Geoinżynierii, Górnictwa i Geologii
Mining Science 2023;30:63-81
KEYWORDS
TOPICS
ABSTRACT
The results of an underground study of the interaction of expansion bolts with the rock mass, aimed at the improvement of rock bolting selection principles in copper ore mines in the LGOM (Legnica and Głogów copper industry district) area are presented in this paper. Although the grouted bolts are generally suitable for use in most types of rock mass, expansion bolting still accounts for a significant share of underground mine workings in two of the three LGOM copper ore mines. This is mainly due to the simplicity of installation and the resultant higher bolting performance, which, among other things, has its economic benefits. Based on the research carried out, it was concluded that in conducive geo-mechanical conditions, mechanically fixed bolts work correctly with the rock mass, however, the correct selection of the bolt design for specific roof conditions is crucial. In order to verify the proper interaction of expansion bolts of different designs with rock mass 6 designs of expansion bolts were selected and 7 underground test sites were prepared. The tests were performed in a crosswise manner, i.e. each tested bolt design was tested on each of the test sites. For the mentioned 42 bolt-rock mass systems, the underground performance tests of rock bolting were performed immediately after its installation and then, after 1 and after 2 years from installation. Based on the results of the tests, the selected expansion bolts of different designs were evaluated for proper interaction with rock mass of varying properties.
REFERENCES (33)
1.
BAČIĆ M., KOVAČEVIĆ M.S., and KAĆUNIĆ D.J., 2020, Non-Destructive Evaluation of Rock Bolt Grouting Quality by Analysis of Its Natural Frequencies, Materials, Vol. 13 (2), p. 282.
2.
BRADY B.H.G. and BROWN E.T., 2006, Rock mechanics for underground mining, Springer, Dordrecht 2006.
3.
CAŁA M., FLISIAK J., and TAJDUŚ A., 2001, Mechanism of cooperation of bolts with varied rock mass (Mechanizm współpracy kotwi z górotworem o zróżnicowanej budowie), Instytut Gospodar-ki Surowcami Mineralnymi i Energią PAN, Kraków (in Polish).
4.
CHEN J. et al., 2023, Investigating the Influence of Embedment Length on the Anchorage Force of Rock Bolts with Modified Pile Elements, Applied Sciences, Vol. 13 (1), p. 52.
5.
FENG X. et al., 2022, A novel rock bolting system exploiting steel particles, International Journal of Mining Science and Technology, Vol. 32 (5), pp. 1045–1058.
6.
FENG X et al., 2021, Re-think of solving the gloving problem in bolting systems by adulterating steel particles, Construction and Building Materials, Vol. 268, p. 121179.
7.
FUŁAWKA K. et al., 2022, Roof Fall Hazard Monitoring and Evaluation – State-of-the-Art Review, Energies (Basel), Vol. 15 (21), p. 8312.
8.
GŁUCH P., 1998, Influence of technical-technological parameters on the load capacity of roof bolts with adhesive anchoring. Part 1. Technical parameters of bolts and adhesive loads. WUG: Work safety and environmental protection in mining (Wpływ parametrów techniczno-technologicznych na nośność kotwi wklejanych. Cz. 1. Parametry techniczne kotwi i ładunków klejowych, WUG: Bezpieczeństwo pracy i ochrona środowiska w górnictwie), 12, pp. 17–25.
9.
GRZEBYK W., PIASECKI P., and STOLECKI L., 2016, Bolt roof bolting interaction with rock mass based on inclinometer measurements (Współpraca obudowy kotwiowej z górotworem na podstawie pomiarów inklinometrycznych), Mining and Tunnel Construction (Budownictwo Górnicze i Tune-.
11.
HOEK E.T., KAISER P.K., and BAWDEN W.F., 1993, Support of underground excavations in hard rock, CRC Press, Balkema.
12.
HØIEN A.H., LI C.C., and ZHANG N., 2021, Pull-out and critical embedment length of grouted rebar rock bolts-mechanisms when approaching and reaching the ultimate load, Rock Mechanics and Rock Engineering, Vol. 54, pp. 1431–1447.
13.
Instructions No. 03/TT/KGHM, July 2008, Instruction for the measurement of roof bolting parameters (INSTRUKCJA NR 03/TT/KGHM, 2008, Instrukcja wykonywania pomiarów parametrów obudowy kotwowej).
14.
Instructions No. 06/TT/KGHM, 2012, Instruction for execution of roof bolting. Ed. 2, Place not indicated, KGHM Polska Miedź S.A.
15.
JĘDRZEJOWSKI A., PŁANETA S., and SIEWIERSKI S., 1975, Influence of the type of rubber mixtures on the load capacity of bolts, Mining Review, (Wpływ rodzaju mieszanek gumowych na nośność kotwi, Przegląd Górniczy), Vol. 31, 7, pp. 409–414).
16.
Juszyński, D., et al. 2018. Safety of use of excavations under conditions of danger of caving and rockfall in LGOM mining plants in the light of new regulations. Occupational Safety and Environmental Protection in Mining. 2018, pp. 36–41 (Bezpieczeństwo użytkowania wyrobisk w warunkach zagrożenia zawałami i obrywaniem się skał w zakładach górniczych LGOM w świetle nowych przepisów. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie. 2018, pp. 36-41).
17.
Kidybiński, A. and Nierobisz, A. 1997. Status and development directions of roof bolting casing in underground mining. Occupational Safety and Environmental Protection in Mining. 1997. special edition (Stan i kierunki rozwojowe obudowy kotwiowej w górnictwie podziemnym. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie. 1997. wydanie specjalne).
18.
Kim, Sejin, Youn, Heejung and Kim, Kyoungchul. 2016. Analytical analysis of pullout resistance of the hydraulic expansion rockbolts on a frictionally coupled model. Journal of mountain science. 2016, 12, pp. 2249-2259.
19.
Madziarz, M. 2002. Research on mining bolts in the Laboratory of the Institute of Mining of Wrocław University of Science and Technology. Scientific Papers of the Institute of Mining of Wrocław University of Science and Technology. Studies and Materials. 2002, Vol. 102, 29, pages 127-136 (Badania kotwi górniczych w Laboratorium Instytutu Górnictwa Politechniki Wrocławskiej. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej. Studia i Materiały. 2002, Vol. 102, 29, pp. 127-136).
20.
Małkowski, A. and Stępień, P. 2015. Bolt and rock mass interaction. Occupational Safety and Environmental Protection in Mining. 2015, Volume 11, pages 24-33 (Współpraca kotwi z górotworem. Bezpieczeństwo Pracy i Ochrona Środowiska w Górnictwie. 2015, Vol. 11, pp. 24-33).
21.
Martyniak, R., Rzepecki, R. and Turbak, A. 2003. Development of bolting process technology in copper ore mining. Cuprum: a scientific and technical journal of ore mining. 2003, 3, pages 17-30 (Rozwój technologii procesu kotwienia w górnictwie rud miedzi. Cuprum : czasopismo naukowo-techniczne górnictwa rud. 2003, 3, pp. 17-30).
22.
Pawelus, D. 2013. Evaluation of the stability of mining tunnel workings in the area of the R-XI shaft using the elastic-plastic model of the rock mass and the Coulomb-Mohr criterion. Cuprum : a scientific and technical journal of ore mining. 2013, 4, pages 21-40 (Ocena stateczności wyrobisk korytarzowych w rejonie szybu R-XI z wykorzystaniem sprężysto-plastycznego modelu górotworu i kryterium Coulomba-Mohra. Cuprum : czasopismo naukowo-techniczne górnictwa rud. 2013, 4, pp. 21-40).
23.
Piechota, S., Stopyra, M. and Stasica, J. 2002. Influence of the design of an adhesive bolt rod on the effectiveness of its restraint. Mining Review. 2002, Vol. 58, 7-8, pages 35-41 (Wpływ konstrukcji żerdzi kotwi wklejanej na efektywność jej utwierdzenia. Przegląd Górniczy. 2002, Vol. 58, 7-8, pp. 35-41).
24.
Pochciał, Z., Siewierski, S. and Sztuk, H. 1976. Influence of roof vibrations on the operation of roof bolting. Ores and Non-ferrous Metals. 1976, 7, pages 244-246 (Wpływ drgań stropu na pracę obudowy kotwiowej. Rudy i Metale Nieżelazne. 1976, 7, pp. 244-246).
25.
Pytel, W. 2012. Geomechanical problems of roof bolting selection for mine workings. Wrocław: KGHM Cuprum sp. z o.o. Research and Development Centre, 2012 (Geomechaniczne problemy doboru obudowy kotwowej dla wyrobisk górniczych. Wrocław : s.n., 2012).
26.
Regulation of the Minister of Energy of 23 November 2016 on detailed requirements for the conduct of underground mines. Vol. of Journal of Laws 2017 item 1118 (Rozporządzenie Ministra Energii z dnia 23 listopada 2016 r. w sprawie szczegółowych wymagań dotyczących prowadzenia ruchu podziemnych zakładów górniczych. Vol. Dz.U. 2017 poz. 1118).
27.
Rzepecki, W. and Szczepański, M. 2005. Investigations of expansive bolts securing an excavation with a long period of use. Scientific Papers of the Institute of Geotechnics and Hydraulic Engineering of Wrocław University of Science and Technology. Conferences. 2005, Vol. 75, 41, pages 481-484 (Badania kotwi rozprężnych zabezpieczających wyrobisko o długim okresie użytkowania. Prace Naukowe Instytutu Geotechniki i Hydrotechniki Politechniki Wrocławskiej. Konferencje. 2005, Vol. 75, 41, pp. 481-484).
28.
Salcher, M. and Bertuzzi, R. 2018. Results of pull tests of rock bolts and cable bolts in Sydney sandstone and shale. Tunnelling and Underground Space Technology. 2018, Vol. 74, pp. 60-70.
29.
SIEWIERSKI S., 1978, Identification of the interaction of expansive bolts with rock mass under static and dynamic loads. Wrocław: missing name, 1978 (Identyfikacja współpracy kotwi rozprężnych z górotworem w warunkach obciążeń statycznych i dynamicznych, Wrocław, s.n.
30.
SKRZYPKOWSKI K., 2018, Laboratory of a long expansion rock bolt support for energy-absorbing applications, E3S Web of Conferences, Vol. 29, p. 4.
31.
Safety factor for roof bolting of mine workings. Mining Engineering. 2019, 2-3, pages 40-48 (Współczynnik bezpieczeństwa dla obudowy kotwowej wyrobisk górniczych. Inżynieria Górnicza. 2019, 2-3, pp. 40-48).
32.
SONG G. et al., 2017, A review of rock bolt monitoring using smart sensors, Sensors (Basel, Switzerland), Vol. 17 (4), p. 776.
33.
Guidelines for the selection, execution and control of roof bolting in KGHM Polska Miedź S.A. mines, (Wytyczne doboru, wykonywania i kontroli obudowy wyrobisk w zakładach górniczych KGHM Polska Miedź S.A.), 2017.