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Abstract: The size distribution and fragmentation level of the blasted rock mass are crucial factors in 

enhancing the efficiency of loading, transportation, crushing, and milling processes. This article pro-

vides a comparative analysis of grain size distribution curves derived from image analysis using vari-

ous methods. The first method compares representative fragments of the muck pile through manual 

analysis, commercial software, and an Open-Source Algorithm. The second method evaluates the 

grain size distribution curves of the entire muck pile, utilizing both commercial software and an open-

source algorithm. 
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1. INTRODUCTION 

The design of blasting operations represents a critical phase in the overall process 

of aggregate rock extraction, as it significantly impacts both safety and cost-ef- 

ficiency in the subsequent stages of production (McKee and Il 2013; Zeggeren and 

Chung 1975). Therefore, research efforts have increasingly focused on optimizing 
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blasting techniques by examining the factors that influence the fragmentation out-

comes. 

Quarry managers recognize the substantial role that high-quality drilling and blast-

ing play in optimizing production processes and achieving associated economic gains 

(Dumakor-Dupey et al. 2021). To maintain high standards at the mineral extraction 

stage, these tasks are frequently outsourced to specialized external contractors (Pal 

2021; Isheyskiy and Sanchidrián 2020). The effectiveness of these operations is typi-

cally assessed by analyzing the resulting muck pile, with particular attention given to 

quantifying the proportion of oversized fragments. 

The extraction of rock materials is a complex process that requires meticulous 

planning and the coordination of multiple operational stages over time. The effects of 

suboptimal drilling and blasting practices are particularly significant in the context of 

rock extraction using explosives. Overcharging can result in excessive fragmentation, 

which reduces the economic value of the extracted material (Nikkhah et al. 2022). In 

mining operations, excessive fragmentation can reduce profitability by lowering the 

quality of the extracted raw materials. When drilling and blasting activities are carried 

out by external contractors, financial penalties may be imposed if the material produced 

fails to meet the specified grain size requirements. Additionally, excessive fragmenta-

tion can have significant economic and environmental consequences, such as increased 

risks of damage to areas adjacent to the quarry due to fly rock (Bhatawdekar et al. 2023; 

Ding et al. 2023). The requirement for comprehensive planning is largely driven by 

regulatory standards governing the use of explosives in mining operations. However, 

the extent of such planning frequently exceeds the minimum requirements established 

by national regulations. Conversely, if the amount of explosive deployed is inade-

quate and the rock face is insufficiently fragmented, the transport of larger rock frag-

ments may be significantly hindered or even rendered infeasible (Dotto and Pour-

rahimian 2024). Even if oversized fragments can be transported to the crusher, they 

present 

a significant risk of blockages, which could potentially disrupt or completely halt 

mining operations. To mitigate such operational risks, large boulders must be further 

comminuted to reduce their size. 

Over the past several decades, various empirical models have been developed 

to predict fragment size distribution based on the parameters of blast design 

(Amoako et al. 2022; Mulenga 2020; Esen and Bilgin 2000; Ouchterlony 2005; 

Ouchterlony and Sanchidrián 2019). Among these models, the Kuz-Ram model 

remains the most widely applied. These empirical models continue to undergo 

refinement and are incorporated into software tools to aid the operational activi-

ties of drilling and blasting companies. However, it should be noted that the Kuz-

Ram model often yields idealized predictions, which can result in significant de-

viations from actual blasting outcomes (Figueiredo et al. 2023). Consequently, an 

accurate assessment of the grain size distribution of the muck pile formed after 
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blasting is necessary. 

2. FRAGMENTATION MEASUREMENT METHODS 

AFTER BLASTING WORK USED IN QUARRIES 

Among the current methods for analyzing rock fragmentation, two primary categories 

can be distinguished: direct and indirect techniques (Kawalec et al. 2019). The direct 

method of screening (sieving) is considered the most accurate and precise. In this 

technique, a representative sample of a specified mass is collected from the muck pile 

and passed through a series of sieves with progressively smaller mesh sizes. The ma-

terial retained on each sieve is weighed, and the percentage contribution of each frac-

tion to the total mass of the muck pile is calculated accordingly. Although this method 

provides highly accurate results, it is also time-consuming and costly (Stojanovic et 

al. 2023). Furthermore, its application often leads to disruptions or interruptions in the 

production process. Due to these limitations, indirect methods have been developed, 

such as the oversize boulder count method, the shovel loading rate method, the photo-

grammetry method, and the most widely used technique: image analysis (Nanda and 

Naik 2023). 

The oldest method, which is now being replaced by more modern, accurate, and 

faster solutions, is the manual analysis of the grain size of the muck pile. Manual 

methods also include those that do not require direct sampling. One such example 

involves identifying a representative area of the muck pile in a photograph and using 

a CAD program to outline the grain boundaries. The data regarding the surface area of 

these outlined fragments are then exported to an external program where the neces-

sary calculations are performed. However, selecting a sample that perfectly represents 

the entire pile mass is virtually impossible, making it relatively easy to question the 

validity of the results obtained. A critical step in this method is determining the 

equivalent diameter of each identified grain to account for the irregular shapes of the 

crushed rock. Based on this, each rock fragment is classified and assigned to a specif-

ic size fraction. The primary disadvantage of this method is its significant time re-

quirement. Furthermore, advancements in image analysis technology have rendered it 

largely obsolete in quarrying applications. 

The most commonly used method for assessing rock fragment size distribution is 

now the image processing technique. This approach does not interrupt or hinder the 

production process in quarries. Its primary advantage is the ease of use, facilitated by 

a wide range of software tools (such as WipFrag, Orica BlastIQ, K-Mine, Fragalyst, 

Split-Desktop, and others), which enable intuitive analysis and rapid results (Nanda 

and Pal 2020; Nanda and Naik 2023; Stojanovic et al. 2023). The quality of captured im-

ages and advancements in image analysis are enabling a shift from the commonly used 

method of analyzing a representative fragment to analyzing the entire of the muck pile 
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obtained after blasting. Scientific studies have demonstrated that analyzing the entire 

formed muck pile provides a much more accurate representation of reality, thereby 

resulting in greater precision of the analysis (Engin et al. 2020). An image taken with 

a drone or digital camera is uploaded to the software, which then employs built-in 

algorithms to analyze the photograph, identify, and delineate the edges of the detected 

grains. The user is responsible for verifying the accuracy of this process, with the 

option to manually correct the boundaries of each detected rock fragment. Once the 

identification is confirmed, the software generates a report that includes, among other 

data, a size distribution curve and a histogram of the fragmented muck pile. A notable 

limitation of these programs is their reliance on proprietary algorithms for edge detec-

tion, which are not accessible to the user. These algorithms are typically branded by 

the manufacturer, without the possibility of reviewing the specific methods or proce-

dures used for edge detection and grain size estimation.  

Currently, the most rapidly developing trend, also in the mining industry, is the shift 

from commercial software tools and applications to more advanced, custom algorithms 

that are better suited for tasks related to data acquisition and analysis. This transition is 

part of the broader Mining 4.0 framework, where the integration of digital systems, ma-

chine learning, and custom algorithms plays a crucial role in optimizing operations and 

enhancing productivity (Zhironkin and Ezdina 2023). Therefore, an increasing number 

of professionals involved in this field are developing algorithms specifically tailored to 

the data acquisition methods used in analysis, whether 2D or 3D (Li et al. 2023). This 

direction is currently the most actively developed; however, it requires users to have 

specialized knowledge not only of mining operations but also of programming skills. 

The use of such algorithms allows for a more comprehensive understanding of the entire 

muck pile, providing more accurate and reliable results while requiring a combination of 

mining expertise and advanced computational skills. Additionally, users can obtain sup-

plementary information regarding the analysis being conducted. This allows for the 

inclusion of additional checkpoints in the procedure, enabling verification and control of 

the reliability of the obtained results. The results from the deep learning models were 

compared with traditional manual measurements, conventional image analysis tech-

niques data obtained from 3D photogrammetry, and results derived from empirical mod-

els such as the Kuz-Ram model (Yoshino et al. 2022; Ikeda et al. 2023; Vu et al. 2021). 

This article presents a comparison of grain size distribution curves obtained through 

image analysis using different methods. The first approach involves comparing representa-

tive fragments of the muck pile using a manual method, commercial software (WipFrag), 

and oper-source algorithm. The second approach compares the grain size distribution 

curves of the entire muck pile using commercial software and open-source algorithm. 
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3. MATERIALS AND METHODS 

The muck pile fragmentation assessment was conducted at the Kujawy quarry, located 

in central Poland, where limestone is extracted to meet the needs of the cement plant. 

Limestone extraction is performed using the long-hole blasting method. The entirety 

of the crushed rock material is designated for use by the cement plant. A general view 

of the muck pile  for which a grain size distribution analysis was conducted is pre-

sented in Fig. 1. 

 

Fig. 1. General view of the muck pile for which a grain size distribution analysis was conducted 

3.1. METHOD I: 

MANUAL IMAGE PROCESSING 

After the blasting operations, a drone survey was conducted to obtain photographic ma-

terial. To ensure proper calibration of the images, the coordinates of reference points 

were measured using a GNSS receiver before commencing the drone flights. Additional-

ly, an object with known dimensions was placed within the muck pile area to serve as 

a reference point. 
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Fig. 2. Selected representative fragment for analysis with dygitize boundaries of grains 

The main part of the analysis was carried out in AutoCAD, where the image of the 

muck pile was imported, and data were prepared to enable proper calibration. Subse-

quently, a representative fragment of 10 m  10 m was selected for analysis. In the next 

step, the edges of individual grains within the selected area were delineated (Fig. 2) and 

their volumes were calculated. 

The data obtained were exported to an Excel spreadsheet, where the necessary trans-

formations and calculations were performed: the equivalent diameter of each identified 

rock was calculated, volumes were assigned to respective size fractions, and a grain 

size distribution curve was plotted based on this information (Fig. 3). 

 

Fig. 3. Grain size distribution curve prepared using the manual method 
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3.2. METHOD II: 

IMAGE PROCESSING USING COMMERCIAL SOFTWARE 

For the analysis using commercial software, Wipfrag4 was selected, developed by the 

Canadian company WipWare, which specializes in photoanalysis devices and soft-

ware used in mines worldwide. The work in the program begins with uploading the 

captured image and setting the scale by marking reference points. For the purposes of 

this article, two images were analyzed: an image of the representative fragment se-

lected for analysis using Method I and an image of the entire muck pile. 

The analysis procedure was conducted in accordance with the guidelines provided 

in the software manufacturer’s manual (Fig. 4). Among the available options for 

edge detection analysis, the Deep Learning method was selected. To enable com-

parison, the data obtained from Wipfrag (percentage of size fractions, statistical pa-

rameters of the analyzed sample) were exported to Excel. The results of the analysis 

are presented in Fig. 5. 

 

Fig. 4. Color classification of the size of detected grains in the WipFrag program 
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Fig. 5. Grain size distribution  of the entire muck pile (a) and a representative fragment 

of the muck pile (b) generated in Wipfrag Deep Learning mode 

3.3. METHOD III: 

IMAGE PROCESSING USING DEEP LEARNING ALGORITHM 

The application of Open-Source Algorithm in grain size distribution analysis involves 

using advanced neural networks, particularly convolutional neural networks (CNNs), 

to automatically detect and classify the sizes of particles or grains in images of a 

muck pile or rock fragments. This approach leverages deep learning models’ ability to 

recognize patterns and features in complex datasets, making them particularly effec-

tive in analyzing images for particle size distribution. 

To achieve the most accurate results, the image for entire muck pile was divided 

into two areas before the main analysis (Fig. 6). This division was carried out in such 

a way as to separate the shaded area from the well-lit area as much as possible. This 

step was necessary because, during the conversion to a binary image, it was impossi-

ble to establish a threshold point that would allow edge detection across the entire 

image simultaneously. 
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Fig. 6. Division of the muck pile into sectors 

For this reason, the processing procedure in Matlab was conducted separately 

for Sector 1 and Sector 2. The algorithm for grain size distribution analysis con-

sists of several image processing steps that enable edge detection of the grains, 

image segmentation, and identification and analysis of individual grains. The 

results obtained from these procedures (Fig. 7) were exported to Excel, where 

they were combined and a comprehensive analysis of the grain size distribution 

was performed (Fig. 8a). 

Subsequently, the analysis procedure employing the open-source algorithm was 

applied to a representative fragment of the muck pile (Fig. 2). The results of this 

analysis are displayed in Fig. 8b. 
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Fig. 7. Individual outputs of the grain size distribution curve generation procedure 

using open-source algorithm in Matlab 
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 a)  b) 

  

Fig. 8. The result of the grain size distribution of the entire muck pile (a) and a representative fragment 

of the muck pile (b) obtained using open-source algorithm in Matlab 

4. RESULTS 

The grain size distribution curves of the representative fragment of the muck pile ob-

tained by Methods I, II and III are presented in the Fig. 9, while the table (Table 1) 

summarizes the basic statistical parameters of the analysis results. 

 

Fig. 9. Grain size distribution curves of the representative fragment of the muck pile 

obtained using Method I, Method II and Method III 

The main difference in the obtained results lies in the number of detected grains 

across the various size fractions. The WipFrag software identified over 200 additional 
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particles, with a noticeable predominance in the <20 cm fraction. In the case of the 

manual method, this fraction constituted approximately 30% of the total particle count, 

whereas the commercial software estimated the share of this fraction to be as high as 

80% of all particles. The discrepancies for the larger fractions are less pronounced, 

with differences gradually decreasing until reaching a maximum value. Several fac-

tors may account for these variations in the results. Firstly, the commercial software 

employs a proprietary algorithm for estimating non-visible fractions, which represents 

a notable advantage, as these estimation methods are continuously refined through 

machine learning based on user analyses. Secondly, during the analysis, there was 

noticeable over-segmentation of certain particles, particularly at the edges of the ana-

lyzed area and in regions with varying illumination. Both methods, however, indicated 

a relatively low content of oversized particles (fractions above 100 cm) within the 

analyzed area, amounting to 2% according to the manual analysis and 5% according 

to the WipFrag analysis. 

Table 1. Basic statistical parameters of analysis results for the muck pile fragment 

Parameter Unit Manual method Wipfrag 4 
Open-Source 

Algorithm 

Total number 

of grains 
[–] 429 690 542 

<20 [cm] 121 581 328 

20.01–50.00 [cm] 204 61 135 

50.01–80.00 [cm] 68 20 50 

80.01–100.00 [cm] 13 15 12 

>100.00 [cm] 23 13 17 

Min. [cm] 5.53 no data* 2.20 

D25 [cm] 19.01 89,43 5.33 

D50 [cm] 28.54 124,81 12.86 

D75 [cm] 49.6 176,2 34.54 

Max. [cm] 204.1 231 190.28 

Average [cm] 39.35 no data* 24.88 

Median [cm] 28.54 124,81 12.86 

Standard 

deviation 
[cm] 30.43 no data* 28.69 

* The program does not generate values. 

The grain size distribution curves of the entire muck pile are presented in Fig. 10. 

The table (Table 2) summarizes the basic statistical parameters obtained from anal-

yses. 
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Fig. 10. Grain size distribution curves of the representative fragment of the muck pile 

obtained using Method II and Method III 

Table 2. Basic statistical parameters of analysis results for the muck pile fragment 

Parameter Unit WipFrag 4 
Open-Source 

Algorithm 

Total number of grains [–] 4408 2863 

<20 [cm] 1388 114 

20.01–50.00 [cm] 1969 1775 

50.01–80.00 [cm] 569 536 

80.01–100.00 [cm] 257 166 

>100.00 [cm] 225 272 

Min. [cm] no data* 17,2 

D25 [cm] 81,82 28,6 

D50 [cm] 120,73 40,29 

D75 [cm] 189,83 62,07 

Max. [cm] 442,99 379,32 

Average [cm] no data* 53,51 

Median [cm] 124,81 40,29 

Standard 

deviation 
[cm] no data* 39,92 

* The program does not generate values. 

As in the analysis of the muck pile fragment, the grain size distribution curve also 

demonstrates discrepancies, particularly in the smallest fraction range. The algorithm 

used in Method II was the only one that did not detect the presence of the <20 cm 

fraction. To address this issue, an estimation algorithm for this fraction could be in-

corporated, similar to that employed in commercial software. 

The statistical data for both methods are presented in Table 2. The commercial soft-
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ware identified nearly twice the number of grains compared to the open-source algo-

rithm. In both methods, the highest proportion of grains was observed in the 20–50 cm 

size fraction. The oversized fractions constituted 15.93% according to the open-

source algorithm and 10.93% as per the WipFrag software. Although the number of 

detected grains across most fractions is relatively comparable, the percentage distribu-

tion differs due to the disparity in the total grain count. This variation is primarily 

attributed to differences in sample size. 

5. DISCUSSION 

Following the analysis, several differences were identified that could have a significant 

impact on the results obtained and the method’s potential applicability within the indus-

try. These observed differences have been systematically summarized in Table 3. 

Table 3. Comparison of image analysis methods for grain size distribution 

Function 
Manual image 

analysis method  

Method using 

commercial software  

Open-source 

algoritm 

Analysis 

time 

Very time-consuming; 

manual digitization of edges 

limits the analysis to 

a representative fragment 

of the muck pile image. 

Generally faster due to 

optimized and compiled 

algorithms, but in specific 

settings, the analysis may 

take up to 40 minutes. 

Variable; may be slower 

due to the use of neural 

networks. 

Input 

requirements 
Minimal input data 

Minimal input data; 

highly automated 

Many parameters need 

to be manually set. 

Flexibility 
High; allows customization 

at every stage 

Lower; limited to the set 

of functions available 

in the software 

High; allows customization 

at every stage. 

Accuracy 

High; requires full user 

oversight and decision-making 

regarding edge detection. 

High, due to proprietary 

algorithms and calibration 

tools 

Potentially high with the 

appropriate model and 

parameters, capable of 

processing high-resolution 

images without the need 

for size compression. 

Hardware 

requirements 

Minimal; the only 

requirements may relate to the 

graphics card; in practice, the 

analysis can be performed 

on any computer. 

Requires a high-performance 

system but is optimized 

for speed. 

Requires a good 

CPU/GPU for efficient 

processing 

Customization 

of results 

High; the user can modify 

the edges, result sets, 

and visualization. 

Moderate; limited to 

predefined templates 

and outputs 

High; the user can modify 

processing steps and 

visualization. 

Ease of use 
Low; requires proficiency 

in CAD software and Excel 

High; designed for users 

without programming 

knowledge 

Low; requires programming 

knowledge and parameter 

tuning. 
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Cost 
Free (if using CAD software 

in open-source mode) 

Commercial software; 

requires a license 
Free (open-source) 

The complete analysis of the representative fragment of the muck pile using 

Method I (manual) in AutoCAD, followed by processing in Excel, required approxi-

mately 8 hours. The most time-intensive phase (about 7 hours) involved accurately de-

lineating the grain contours. In contrast, conducting the contouring and analysis for the 

same area in WipFrag 4 was considerably faster. The observed differences depended 

on the mode utilized in WipFrag: 

 Simple Mode. This mode allows for selecting the grid density via a slider. The 

program was most efficient at detecting the boundaries of larger fragments. How-

ever, its accuracy diminished significantly for smaller grains, particularly at the 

image's periphery, where the algorithm often failed to close the contours of frag-

ments. Due to the limited control over grid density, there were frequent instances 

of over-segmentation of larger rocks in some areas, while in others, the detected 

edges did not align with those visible in the image. 

 Advanced Mode. This mode provides two analysis options: manual adjustment of 

values within specific ranges and the Best Fit function, which includes three algo-

rithms (Quick: ~3 minutes, Regular: 8–10 minutes, and Thorough: 45–50 minutes). 

The automatically generated contours in this mode showed a higher degree of ac-

curacy in matching the visible edges in the image, with the accuracy improving 

as the grid settings were refined. However, the software also exhibited difficul-

ties in edge detection at the image boundaries, necessitating manual interven-

tion to correct the grain contours in those regions. 

 Deep Learning Mode. This mode employs a machine learning algorithm to gener-

ate the grid, completing the process in less than 30 seconds. Although requiring 

fewer user-defined settings, the algorithm demonstrated superior accuracy in de-

tecting grain edges compared to the other modes. Nonetheless, some manual ad-

justments were still necessary, and upon closer examination, this mode yielded 

the most accurate results among the tested methods. However, similar to the 

Simple Mode, it did not detect fragments located at the edges of the image. 

An important aspect to consider when evaluating these methods is their accuracy. 

The manual method, due to its inherent nature, is highly accurate and seldom results in 

excessive or insufficient segmentation of fragments. In contrast, the algorithm using the 

Deep Learning setting exhibited some instances of these segmentation errors, although 

they were less frequent than in the Simple and Advanced settings. It is also noteworthy 

that during manual corrections, the intersection of existing lines with newly drawn ones 

often created small areas or single pixels that were misinterpreted by the program as 

grains, subsequently categorized into the finest fraction. The reduction in the resolution 

of the imported image may also have influenced the accuracy of the analysis; for exam-

ple, an image of the entire muck pile initially had a resolution of 5280  3956 pixels, 
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which was reduced to 1440  1079 pixels upon import into the software. This reduction 

likely aims to expedite algorithm performance by decreasing the number of pixels to be 

processed, but it also leads to a significant loss in image quality and clarity. 

The duration of the analysis using the open-source algorithm is variable and influ-

enced by several factors, including image size and resolution, hardware specifications 

(CPU, RAM), and algorithmic complexity. The algorithm encompasses multiple pro-

cessing steps, such as Gaussian blurring, thresholding, and connected component 

analysis, each contributing to the overall computation time. It is estimated that loading 

the model and image takes minimal time, measured in milliseconds, while prepro-

cessing steps (blobbing and cropping) require moderate time, depending on image 

dimensions. The most computationally intensive step is edge detection using the Ho-

listically-Nested Edge Detection (HED) network, which involves neural network in-

ference and can take several seconds per image, depending on available hardware 

resources (CPU or GPU). Other steps, such as thresholding and connected component 

analysis, typically require a few seconds, while post-processing tasks, including color-

ing, filtering, and centroid marking, are less time-consuming and generally take less 

than a second. 

The open-source algorithm based on Holistically-Nested Edge Detection also ne-

cessitates the manual configuration of several parameters, unlike WipFrag, which is 

more automated and user-friendly. These parameters include paths to model files, the 

path to the input image, mean pixel values for image normalization, the thresholding 

method, and connectivity settings for connected component analysis. 

Compared to WipFrag, the open-source algorithm offers several advantages and 

disadvantages. One of the primary advantages is its adaptability; users have full con-

trol over each step of the image processing workflow, allowing them to customize the 

algorithm to specific needs and image types. Another benefit is the absence of licens-

ing costs, as the algorithm is open-source and therefore free to use. Its high flexibility 

enables modifications for various applications. However, the disadvantages include 

the time-consuming nature of the analysis, particularly during the neural network in-

ference stage, and the required expertise of the user, who must possess programming 

skills, knowledge of image processing, and the ability to fine-tune parameters. Addi-

tionally, the lack of official technical support and regular updates can be a drawback 

compared to commercial solutions. 

In contrast, WipFrag offers several benefits, such as ease of use—it is designed for 

engineering users who do not need specialized programming knowledge. The soft-

ware also provides optimized processing speed due to its compiled and optimized 

algorithms, as well as regular updates and technical support from the provider. It in-

cludes built-in calibration tools that aid in verifying and calibrating the accuracy of 

the analysis. However, the disadvantages of WipFrag include its cost, as it requires a 

commercial license, which may be a barrier for some users, and its limited flexibility, 

as users have fewer options to customize the analysis for non-standard cases. 
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Another factor affecting the effectiveness of the analysis is the number of possible 

metrics that can be computed, such as the mean, median, or quartiles. In the manual 

method, the use of Excel allows for the calculation of any desired metric. In contrast, 

WipFrag only provides results for predefined metrics, which do not include basic 

statistics like the minimum value, mean, or standard deviation, even though these 

metrics were available in the previous version of the software (WipFrag 3) when ex-

porting results to a .csv file. 

6. CONCLUSION 

Both commercial and open-source tools can provide accurate grain size distribution 

results. However, open-source algorithms offer greater flexibility to adjust the analy-

sis parameters, which can lead to better performance in specific or complex condi-

tions. Commercial tools are generally optimized for speed and ease of use but may 

lack flexibility in adapting to unique or non-standard conditions. Open-source algo-

rithms have a clear advantage in terms of cost and accessibility. They are free to use 

and modify, which makes them appealing for academic researchers and small-scale 

operations. 

Commercial software tends to be more user-friendly, with intuitive interfaces and 

streamlined workflows that require less technical knowledge. Open-source tools may 

require more expertise in programming and data analysis, which could limit their use 

to more technically skilled users. 

The choice between commercial software and open-source algorithms for grain 

size distribution analysis depends on the specific needs of the mining operation, avail-

able resources, and the desired balance between cost, flexibility, and ease of use. 

While commercial software provides a fast and user-friendly option for routine appli-

cations, open-source algorithms offer a more customizable and cost-effective solution 

for users with the necessary technical skills to modify and adapt the tools to their spe-

cific requirements. 
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